IAM

TAG»DEEP LEARNING«

ARTICLE

ICML Talk “Confidence-Calibrated Adversarial Training”

Confidence-calibrated adversarial training (CCAT) addresses two problems when training on adversarial examples: the lack of robustness against adversarial examples unseen during training, and the reduced (clean) accuracy. In particular, CCAT biases the model towards predicting low-confidence on adversarial examples such that adversarial examples can be rejected by confidence thresholding. In this article, I want to share the slides of the corresponding ICML talk.

More ...

ARTICLE

ICML Paper “Confidence-Calibrated Adversarial Training”

Our paper on confidence-calibrated adversarial training was accepted at ICML’20. In the revised paper, the proposed confidence-calibrated adversarial training tackles the problem of obtaining robustness that generalizes to attacks not seen during training. This is achieved by biasing the network towards low-confidence predictions on adversarial examples and rejecting these low-confidence examples at test time. This article gives a short abstract and includes paper and code.

More ...

ARTICLE

ArXiv Pre-Print “On Mitigating Random and Adversarial Bit Errors”

Deep neural network (DNN) accelerators are specialized hardware for inference and have received considerable attention in the past years. Here, in order to reduce energy consumption, these accelerators are often operated at low voltage which causes the included accelerator memory to become unreliable. Additionally, recent work demonstrated attacks targeting individual bits in memory. The induced bit errors in both cases can cause significantly reduced accuracy of DNNs. In this paper, we tackle both random (due to low-voltage) and adversarial bit errors in DNNs. By explicitly taking such errors into account during training, wecan improve robustness significantly.

More ...

26thJUNE2020

PROJECT

Random and adversarial bit errors in quantized DNN weights.

More ...

ARTICLE

Illustrating (Convolutional) Neural Networks in LaTeX with TikZ

Many papers and theses provide high-level overviews of the proposed methods. Nowadays, in computer vision, natural language processing or similar research areas strongly driven by deep learning, these illustrations commonly include architectures of the used (convolutional) neural network. In this article, I want to provide a collection of examples using LaTeX and TikZ to produce nice figures of (convolutional) neural networks. All the discussed examples can also be found on GitHub.

More ...