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Abstract

Despite their success, vision transformers still remain
vulnerable to image corruptions, such as noise or blur. In-
deed, we find that the vulnerability mainly stems from the
unstable self-attention mechanism, which is inherently built
upon patch-based inputs and often becomes overly sensi-
tive to the corruptions across patches. For example, when
we only occlude a small number of patches with random
noise (e.g., 10%), these patch corruptions would lead to se-
vere accuracy drops and greatly distract intermediate at-
tention layers. To address this, we propose a new training
method that improves the robustness of transformers from a
new perspective – reducing sensitivity to patch corruptions
(RSPC). Specifically, we first identify and occlude/corrupt
the most vulnerable patches and then explicitly reduce sen-
sitivity to them by aligning the intermediate features be-
tween clean and corrupted examples. We highlight that the
construction of patch corruptions is learned adversarially
to the following feature alignment process, which is partic-
ularly effective and essentially different from existing meth-
ods. In experiments, our RSPC greatly improves the sta-
bility of attention layers and consistently yields better ro-
bustness on various benchmarks, including CIFAR-10/100-
C, ImageNet-A, ImageNet-C, and ImageNet-P.

1. Introduction

Despite the success of vision transformers [10] in recent
years, they still lack robustness against common image cor-
ruptions [24, 52], such as noise or blur, and adversarial per-
turbations [13, 15, 42]. For example, even for the state-of-
the-art robust architectures, e.g., RVT [34] and FAN [61],
the accuracy drops by more than 15% on corrupted exam-
ples, e.g., with Gaussian noise, as shown in Figure 2 (blue
star on the right). We suspect that this vulnerability is in-
herent to the used self-attention mechanism, which relies on
patch-based inputs and may easily become overly sensitive
to corruptions or perturbations upon them.

Figure 1. Sensitivity to patch perturbations/corruptions in terms
of confidence score of the ground-truth class. We randomly select
10% patches to be perturbed/corrupted for RVT-Ti [34]. In prac-
tice, adversarial patch perturbations (often invisible) significantly
reduce the confidence, indicating the high sensitivity of transform-
ers to patches. However, directly adding random noise only yields
marginal degradation even with the highest severity in ImageNet-
C [24]. By contrast, occluding patches with noise greatly reduces
the confidence and can be used as a good proxy of adversarial
patch perturbations to reveal the patch sensitivity issue.

A piece of empirical evidence is that transformers can
be easily misled by the adversarial perturbations only on
very few patches (even a single patch [13]). As shown
in Figure 1, given a clean image, we randomly sample a
small number of patches, e.g., 10%, and introduce pertur-
bations/corruptions into them. Considering RVT [34] as
a strong baseline, when we generate adversarial perturba-
tions using PGD-5, these perturbed patches greatly reduce
the confidence score from 63.8% to 3.1% and result in a
misclassification. Nevertheless, generating adversarial per-
turbations can be very computationally expensive (e.g., 5×
longer training time for PGD-5), which makes adversarial
training often infeasible on large-scale datasets [26, 39, 53],
e.g., ImageNet. Instead, an efficient way is directly adding
corruptions, e.g., random noise, on top of these patches. In
practice, even with the highest severity in ImageNet-C [24],
these corrupted patches only yield a marginal degradation
in terms of confidence score. Thus, how to construct patch
corruptions that greatly misleads the model and can be pro-
duced very efficiently becomes a critical problem.

Interestingly, if we totally discard these patches and oc-
clude them with random noise, the model becomes very vul-
nerable again, e.g., with the confidence score dropping from
63.8% to 17.3% in Figure 1. More critically, these corrupted
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Figure 2. Sensitivity to patch-based corruptions in terms of attention stability (left) and accuracy (right). Left: We randomly occlude 10%
patches with noise and show the attention maps of different layers in RVT-Ti [34] and our RSPC-RVT-Ti. Following [13], we choose
the center patch (red square) as the query and average the attention scores across all the attention heads for visualization. Regarding this
example, we also compute the average cosine similarity (Cos-Sim) between the clean and corrupted attentions across different layers.
Clearly, our RSPC model yields more stable attention maps. Right: On ImageNet, we plot the distribution of accuracy on the occluded
examples with different occlusion masks. Here, we randomly sample 100 different masks for each image. We show that RVT is very
sensitive to the patch-based corruptions and has a much larger variance of accuracy than our RSPC model.

patches also have significant impact on the attention maps
across layers, as shown in Figure 2 (left). We suspect this
to be the case due to the global interactions across tokens in
the attention mechanism – even when occluding only few
patches. Quantitatively, this can be captured by comput-
ing the average cosine similarity between the attentions on
clean and corrupted images across layers, denoted by Cos-
Sim. Regarding the considered example in Figure 2, the
Cos-Sim of only 0.43 for RVT indicates a significant shift in
attention – a phenomenon that we can observe across the en-
tire ImageNet dataset (see Figure 5). In fact, these attention
shifts also have direct and severe impact on accuracy: In
Figure 2 (right), we randomly sample 100 occlusion masks
for each image and show the distribution of accuracy (blue
box). Unsurprisingly, the accuracy decreases significantly
when facing patch-based corruptions, compared to the orig-
inal examples (blue star). These experiments highlight the
need for an inherently more robust attention mechanism in
order to improve the overall robustness of transformers.

We address this problem by finding particularly vulnera-
ble patches to construct patch-based corruptions and stabi-
lizing the intermediate attention layers against them. Since
we use random noise to occlude patches, we move the focus
from how to perturb patch content to finding which patch
should be occluded. As shown in Figure 2 (right), with a
fixed occlusion ratio, the accuracy varies a lot when occlud-
ing different patches (e.g., ranging from 60% to 75% in the
blue box). Since we seek to reduce the sensitivity to patch
corruptions, occluding the most vulnerable (often very im-
portant) patches and explicitly reducing the impact of them
should bring the largest robustness improvement. Inspired
by this, we seek to identify the most vulnerable patches to
construct patch-based corruptions and then align the inter-
mediate features to make the attention less sensitive to the
corruptions in individual patches. In practice, we are able to
reduce the impact of patch-based corruptions significantly,

improving the Cos-Sim from 0.43 (for RVT-Ti) to 0.91 in
Figure 2 (left). This is also directly observed in the visual
results where these corruptions have little impact on the in-
termediate attention maps of our robust model. The stable
attention mechanism also greatly improves the robustness
of transformers. As shown in Figure 2 (right), compared
with RVT, we obtain significantly higher accuracy when
facing examples with different occlusion masks (red box),
alongside the improved overall accuracy and robustness on
full images (red star).

Contributions: In this paper, we study the sensitivity
of transformers to patch corruptions and explicitly stabi-
lize models against them to improve the robustness. Here,
we make three key contributions: 1) We propose a new
training method that improves robustness by reducing sen-
sitivity to patch corruptions (RSPC). To this end, we
first construct effective patch-based corruptions and then
reduce the sensitivity to them by aligning the intermedi-
ate features. 2) When constructing patch corruptions, we
develop a patch corruption model to find particularly vul-
nerable patches that severely distract intermediate attention
layers. In practice, the corruption model is trained adver-
sarially to the classification model, which, however, is es-
sentially different from adversarial training methods. To be
specific, we only learn which patch should be corrupted in-
stead of the pixel-level perturbations. 3) In experiments, we
demonstrate that the robustness improvement against patch
corruptions (shown in Figure 2 (right)) can generalize well
to diverse architectures on various robustness benchmarks,
including ImageNet-A/C/P [24,60]. More critically, we can
show, both qualitatively and quantitatively, that these im-
provements stem from the more stable attention mechanism
across layers. It is worth noting that, when compared with
adversarial training methods, RSPC obtains a better tradeoff
between accuracy and corruption robustness while keeping
significantly lower training cost [57] (see Figure 7).
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Figure 3. Overview of the proposed reducing sensitivity to patch corruptions (RSPC) training procedure. We present a patch corruption
model to produce patch-based corruptions and align the features of each self-attention block between the clean and corrupted examples
(the alignment loss is highlighted by green box). Unlike existing methods, we select the patches to be occluded/corrupted in an adversarial
way, i.e., corrupting the most vulnerable patches that would greatly distract intermediate attention layers.

2. Related Work

Vision Transformers (ViTs) [10, 25, 49] have achieved
remarkable performance in various learning tasks. Besides
improving clean accuracy, many works seek to study and
improve the robustness of ViTs [2, 4, 5, 18, 20, 37, 43]. In-
terestingly, ViTs are often more robust than convolutional
networks against corruptions [38,45,47] and adversarial at-
tacks [3,14,29,31,33,36,41,46]. To further improve robust-
ness, RVT [34] develops a robust transformer by comparing
different designs for each component, and presents a patch-
wise augmentation. FAN [61] combines token attention and
channel attention [1] and yields new state-of-the-arts. How-
ever, even for these robust transformers, there is still a large
gap between clean and robust accuracy. More critically, the
impact of corruptions/perturbations on the key component
of ViTs, i.e., self-attention, still remains poorly understood.

Besides the above, an intuitive way to improve robust-
ness is to reduce the gap of intermediate features between
clean and corrupted examples, e.g., using feature align-
ment [6, 8, 19, 44, 50, 55, 59]. Typically, feature alignment
aligns the features of examples from two different domains.
However, when considering corruption robustness, the cor-
ruption type of test data is often unknown and the corrupted
training examples are also unavailable. To tackle this, we
focus on ViTs and develop a patch corruption model to pro-
duce effective corrupted examples. Based on these patch
corruptions, we investigate the sensitivity of ViTs to them
and develop a training method to improve robustness.

3. Reducing Sensitivity to Patch Corruptions

We suspect that the vulnerability of state-of-the-art trans-
formers stems from the inherent sensitivity of self-attention
mechanism to the input patches. To verify this, we first
investigate the sensitivity of transformers to diverse patch
corruptions/perturbations in Section 3.1. To alleviate this is-
sue, we explicitly reduce sensitivity to patch corruptions
(RSPC) to improve the robustness. Specifically, in Sec-
tion 3.2, we first develop an effective occlusion-based patch
corruption scheme that identifies particularly vulnerable
patches to construct patch corruptions. Then, in Section 3.3,
we propose to stabilize attention layers against patch cor-
ruptions by aligning the intermediate features between the
corrupted and clean images, as shown in Figure 3.

3.1. Sensitivity of Transformers to Patches

In this part, we comprehensively compare different patch
perturbations/corruptions to investigate the sensitivity of
transformers to their input patches. As shown in Figure 1,
RVT yields extremely low confidence against adversarial
patch perturbations, showing that transformers are very sen-
sitive to individual patches. Nevertheless, generating adver-
sarial perturbations is very computationally expensive and
often becomes infeasible to perform adversarial training on
large-scale datasets [32, 54, 57]. This encourages us to ex-
plore how to reveal and alleviate the patch sensitivity issue
of transformers in a more efficient way. Actually, a simple
way is directly introducing corruptions, e.g., random noise,
into patches. In Figure 1, based on the same patch mask,
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adding noise (even with the highest severity in ImageNet-
C [24]) only slightly reduces the confidence by 2.5%, shar-
ing a similar observation with concurrent work [16]. The
main reason is that the corrupted patches still contain abun-
dant information that can be easily used to build strong cor-
relations with their neighboring patches.

Interestingly, we find that the model can be easily mis-
led again by only incorporating small modifications into the
standard patch corruption method. Specifically, we propose
an occlusion-based patch corruption scheme that occludes
patches with random noise, as shown in the last column in
Figure 1. Formally, given an example x and a binary mask
M(x) on patches, we occlude the selected ones with a ran-
dom noise δ sampled from the uniform distribution. Thus,
the corrupted example can be represented by

x̂ = M(x) · x+ (1−M(x)) · δ. (1)

As for the example in Figure 1, the proposed patch cor-
ruption scheme greatly reduces the confidence score by
56.5%. More critically, as shown in Figure 2, these cor-
rupted patches also significantly distract the intermediate at-
tention layers. In this way, the occlusion-based corruptions
can be regarded as a good proxy of adversarial patch pertur-
bations to reveal the patch sensitivity issue. Moreover, un-
like directly dropping patches, occluding patches with noise
is more challenging for the model and particularly effective
in practice (see results in supplementary). We highlight that
we are not trying to improve the accuracy against patch cor-
ruptions but to improve the overall robustness from a new
perspective, i.e., reducing sensitivity to patch corruptions.

3.2. Finding Vulnerable Patches to be Corrupted

As shown in Figure 2 (right, blue box), randomly occlud-
ing/corrupting patches often incurs significantly different
impacts on accuracy between the best and worst case. This
leads us to consider what patches should be occluded to per-
form effective feature alignment. Since we seek to reduce
the patch sensitivity, we propose a patch corruption model
to construct the worst case. As shown in Figure 3 (bottom
left), given an example x and an occlusion ratio ρ, the cor-
ruption model predicts a binary mask M(x) := C(x; ρ) to
determine which patches should be corrupted. Due to page
limit, we put the ablation study on ρ in supplementary.

Recall that we seek to reduce the patch sensitivity in all
the attention layers, we propose to find those vulnerable
patches that, once occluded, can greatly distract the inter-
mediate attention layers. To this end, we train the patch
corruption model by maximizing the distance of interme-
diate features between clean and corrupted examples. Let
Fl(x) be the features obtained at the l-th layer for x. Given
a model with L layers, the training objective of the patch

Algorithm 1 Training transformer models by reducing
sensitivity to patch corruptions (RSPC). We train the
classification model F and the corruption model C in an
end-to-end manner. In each iteration, we descend the gradi-
ent for F and ascend the gradient for C, respectively.
Require: Training data D, model parameters θC and θF , occlu-

sion ratio ρ, step size η, hyper-parameter λ.
1: for each training iteration do
2: Sample a data batch {xi}Ni=1 from D
3: // Construct patch-based corruptions x̂
4: Sample the random noise δ from a uniform distribution
5: Construct x̂ using the patch corruption model C:

x̂ = C(x; ρ) · x+ (1− C(x; ρ)) · δ
6: // Update the classification model F
7: Update θF by descending the gradient:

θF = θF − η 1
N

∑N
i=1 ∇θF [Lce(xi) + λLalign(xi, x̂i)]

8: // Update the patch corruption model C
9: Update θC by ascending the gradient:

θC = θC + η 1
N

∑N
i=1 ∇θCλLalign(xi, x̂i)

10: end for

corruption model becomes

max
C

Ex∼D Lalign(x, x̂),

where Lalign(x, x̂) =
1

L

∑L

l=1
∥Fl(x)−Fl(x̂)∥2.

(2)
Here, D denotes the distribution of data and Lalign(x, x̂)
denotes the feature alignment loss that measures the aver-
age feature distance over all the attention layers. Compared
with directly maximizing the cross-entropy loss, maximiz-
ing Lalign explicitly distracts the attention layers and in
practice performing alignment against it brings larger ro-
bustness improvement (see results in supplementary).

Architecture of patch corruption model. As shown in
Figure 3 (bottom left), the corruption model is a lightweight
network that contains a convolution followed by a fully
connected layer and a binarization layer. The binarization
layer is essentially a (hard) threshold function that selects
top ρ of the patches to be occluded and keeps the rest un-
changed. Following [27], we use the Straight Through Esti-
mator (STE) to make binarization operation differentiable.

3.3. Reducing Sensitivity via Feature Alignment

Based on the constructed patch corruptions, we seek to
stabilize the self-attention layers by aligning the interme-
diate features between clean and patch-based corrupted ex-
amples, as shown in Figure 3. To make sure that we can
always construct the most challenging corrupted examples
w.r.t. the latest classification model, we simultaneously
train the corruption model C and the classification model
F using an adversarial objective. Specifically, we minimize
both the cross-entropy loss Lce(x) and the alignment loss
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Model #Params (M) CIFAR-10 (%) CIFAR-10-C (%) CIFAR-100 (%) CIFAR-100-C (%)
ResNet50 [22] 23.5 94.77 84.81 76.43 66.75
ResNet50† 23.5 96.01 87.53 81.16 68.08
PRIME [35] 11.7 93.06 89.05 77.60 68.28
NoisyMix [12] 6.1 96.73 92.78 81.16 72.06
AdA [7] 23.5 94.93 92.17 - -

C
N

N

CARD-Decks [9] 44.6 96.80 92.75 80.60 71.30
Swin-T [30] 27.6 95.84 90.25 81.83 70.87
DeiT-S [48] 21.7 95.30 89.01 79.84 68.79
ConViT-S [11] 27.4 96.90 91.73 82.43 71.39
RVT-S [34] 23.0 97.21 92.35 (+0.00) 84.13 73.43 (+0.00)
+ RSPC (Ours) 23.0 97.73 94.14 (+1.79) 84.81 74.94 (+1.51)
FAN-S-Hybrid [61] 25.7 97.69 93.14 (+0.00) 84.92 74.19 (+0.00)

V
iT

+ RSPC (Ours) 25.7 98.06 94.59 (+1.45) 85.30 75.72 (+1.53)

Table 1. Comparisons with the state-of-the-art on CIFAR-10 and CIFAR-100. We evaluate clean accuracy on the original test set and robust
accuracy on the corresponding corrupted datasets, i.e., CIFAR-10-C and CIFAR-100-C. We show that our RSPC significantly improves the
robustness on both datasets. † denotes models with the same training recipe as used for our RSPC.

Lalign(x, x̂) to train F , while maximizing the alignment
loss for C. Since Lce(x) only relies on the clean example,
our training objective can be equivalently formulated as

min
F

max
C

Ex∼D[Lce(x) + λLalign(x, x̂)], (3)

where λ determines the importance of Lalign. To solve the
minimax problem (3), we update the models F and C by
descending and ascending the gradients, respectively. As
shown in Algorithm 1, we first produce the corrupted ex-
amples x̂ using C and descend the gradient w.r.t. Eqn. (3)
to update the parameters θF of the classification model F .
Then, we ascend the gradients to update the parameters θC
of the corruption model C, enforcing it to produce the worst-
case corrupted examples. When ascending the gradient, we
can directly change the sign of gradients, making it possible
for end-to-end training.

4. Experiments
We conduct extensive experiments to evaluate our RSPC

based on two state-of-the-art robust architectures, includ-
ing RVT [34] and FAN [61]. In Section 4.1, we first jus-
tify our method on CIFAR datasets and show that RSPC
achieves new state-of-the-arts on two corruption bench-
marks, namely CIFAR-10-C and CIFAR-100-C. Then, in
Section 4.2, we conduct comparisons on ImageNet and
demonstrate that RSPC greatly improves the robustness
on various robustness benchmarks, including ImageNet-
A, ImageNet-C, and ImageNet-P. Our code is available at
https://github.com/guoyongcs/RSPC.

4.1. Comparisons on CIFAR-10 and CIFAR-100

In this experiment, we train the models from scratch on
CIFAR-10/100 and compare both the accuracy and corrup-
tion robustness. Following [7], we use DeepAugment [23]
and train the models for 200 epochs. We adopt the batch
size of 128 and use cosine decay to adjust the learning rate.

For fair comparisons, we consider RVT-S [34] and FAN-
S-Hybrid [61] as the baselines since they contain approxi-
mately the same number of parameters with popular CNNs
and transformers. In all the experiments, by default, we
set λ = 5×10−3 and ρ = 10% for our RSPC models.
Due to the page limit, we put the ablations on these hyper-
parameters in our supplementary.

In Table 1, we compare our RSPC models with both
state-of-the-art CNNs [7,9,12,17,28,35] and popular trans-
former models [11,30,34,48,61]. To make fair comparisons
with CNNs, we also apply the training recipe of transform-
ers to train a ResNet50 model, denoted by ResNet50† in
Table 1. Specifically, we do not exploit our patch corrup-
tion model or feature alignment, but directly apply the same
augmentation for training. Compared with CNNs, trans-
formers tend to obtain higher accuracy but do not necessar-
ily exhibit better robustness, such as Swin [30], DeiT [48],
and ConViT [11]. As for the carefully designed robust ar-
chitecture RVT [34] and FAN [61], they both greatly im-
prove the robustness and outperform existing methods in
most cases. Compared with the RVT and FAN baselines,
our RSPC models further improve the corruption robustness
by a large margin, i.e., with the improvement larger than
1.4% on both CIFAR-10-C and CIFAR-100-C. More criti-
cally, our RSPC-FAN-S-Hybrid modes achieve new state-
of-the-art results on both benchmarks.

4.2. Comparisons on ImageNet

On ImageNet, we apply our method on top of both
RVT [34] and FAN [61]. Again, we closely follow the
settings of them for training. To evaluate the robust-
ness, we consider several robustness benchmarks, including
ImageNet-A (IN-A) [60], ImageNet-C [24], and ImageNet-
P (IN-P) [24]. Since we also introduce noise to construct the
patch-based corruptions, we also report the results on IN-C
without the corruption types related to noise (i.e., excluding
Gaussian Noise, Shot Noise, and Impulse Noise from the
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Model #FLOPs (G) #Params (M) ImageNet Robustness Benchmarks
IN-A IN-C ↓ IN-C w/o Noise ↓ IN-P ↓

ResNet50 [22] 4.1 25.6 76.1 0.0 76.7 76.0 58.0
ANT [40] 4.1 25.6 76.1 1.1 63.0 64.3 53.2
EWS [17] 4.1 25.6 77.3 5.9 58.7 60.2 30.9C

N
N

DeepAugment [23] 4.1 25.6 75.8 3.9 60.6 52.2 32.1
DeiT-Ti [48] 1.3 5.7 72.2 7.3 71.1 72.9 56.7
ConViT-Ti [11] 1.4 5.7 73.3 8.9 68.4 70.4 53.7
PVT-Tiny [51] 1.9 13.2 75.0 7.9 69.1 70.0 60.1
RVT-Ti [34] 1.3 10.9 79.2 14.6 (+0.0) 57.0 (-0.0) 58.9 (-0.0) 39.1 (-0.0)
+ RSPC (Ours) 1.3 10.9 79.5 16.5 (+1.9) 55.7 (-1.3) 57.5 (-1.4) 38.0 (-1.1)
FAN-T-Hybrid [61] 3.5 7.5 80.1 21.9 (+0.0) 58.3 (-0.0) 59.8 (-0.0) 38.3 (-0.0)

V
iT

-T
in

y

+ RSPC (Ours) 3.5 7.5 80.3 23.6 (+1.7) 57.2 (-1.1) 58.4 (-1.4) 37.3 (-1.0)
DeiT-S [48] 4.6 22.1 79.9 6.3 54.6 56.6 36.9
ConViT-S [11] 5.4 27.8 81.5 18.9 49.8 52.1 35.8
Swin-T [30] 4.5 28.3 81.2 21.6 62.0 64.2 38.3
PVT-Small [51] 3.8 24.5 79.9 18.0 66.9 70.0 45.1
T2T-ViT t-14 [56] 6.1 21.5 81.7 23.9 53.2 54.4 36.2
RVT-S [34] 4.7 23.3 81.9 25.7 (+0.0) 49.4 (-0.0) 51.6 (-0.0) 35.2 (-0.0)
+ RSPC (Ours) 4.7 23.3 82.2 27.9 (+2.2) 48.4 (-1.0) 50.4 (-1.2) 34.3 (-0.9)
FAN-S-Hybrid [61] 6.7 25.7 83.5 33.9 (+0.0) 48.5 (-0.0) 50.7 (-0.0) 34.5 (-0.0)

V
iT

-S
m

al
l

+ RSPC (Ours) 6.7 25.7 83.6 36.8 (+2.9) 47.5 (-1.0) 49.4 (-1.3) 33.5 (-1.0)
MAE (ViT-B) [21] 17.6 86.6 83.6 35.9 51.7 - -
DeiT-B [48] 17.6 86.6 82.0 27.4 48.5 50.9 32.1
ConViT-B [11] 17.7 86.5 82.4 29.0 46.9 49.3 32.2
Swin-B [30] 15.4 87.8 83.4 35.8 54.4 57.0 32.7
PVT-Large [51] 9.8 61.4 81.7 26.6 59.8 63.0 39.3
T2T-ViT t-24 [56] 15.0 64.1 82.6 28.9 48.0 49.3 31.8
RVT-B [34] 17.7 91.8 82.6 28.5 (+0.0) 46.8 (-0.0) 49.8 (-0.0) 31.9 (-0.0)
+ RSPC (Ours) 17.7 91.8 82.8 32.1 (+3.6) 45.7 (-1.1) 48.5 (-1.3) 31.0 (-0.8)
FAN-B-Hybrid [61] 11.3 50.5 83.9 39.6 (+0.0) 46.1 (-0.0) 48.1 (-0.0) 31.3 (-0.0)

V
iT

-B
as

e

+ RSPC (Ours) 11.3 50.5 84.2 41.1 (+1.5) 44.5 (-1.6) 46.8 (-1.3) 30.0 (-1.2)

Table 2. Comparisons of robustness on ImageNet. We report the mean corruption error (mCE) on ImageNet-C and mean flip rate (mFR)
on ImageNet-P. The lower mCE or mFR is, the more robust the model is. Across different model sizes, our RSPC models consistently
improve the robustness compared with the considered baseline.

15 corruption types). Following [24], we report the mean
corruption error (mCE) on IN-C (also IN-C w/o Noise) and
mean flip rate (mFR) on IN-P. For both metrics, lower is bet-
ter. As shown in Table 2, compared with the baselines, our
RSPC models consistently improve the robustness on IN-A
by >1.5% across different model sizes while keeping com-
parable clean accuracy. Moreover, we reduce the corruption
error by >1.0% on IN-C and by >1.2% on IN-C without
noise corruption types. This indicates that our method not
only improves the robustness on noise corruptions but also
generalizes well to the other corruptions (see results on indi-
vidual corruption type in supplementary). When evaluating
the stability against perturbations on IN-P, our RSPC mod-
els also show clear superiority over the RVT and FAN base-
lines. Moreover, as will be shown in supplementary, our
RSPC consistently obtains better robustness against patch
perturbations (e.g., Patch-Fool [13]), patch corruptions, and
adversarial attacks (e.g., PGD [32]). Overall, these experi-
ments indicate that explicitly reducing sensitivity to patches
is particularly effective in improving robustness.

5. Analysis and Discussions

5.1. Visualization Results and More Analysis

Stability of intermediate attention maps. We directly
visualize how much the intermediate attentions would be
changed when facing patch-based corruptions. We take
RVT-Ti as the baseline and compare the attention maps be-
tween RVT-Ti and our RSPC-RVT-Ti. Following [13], we
average the attention maps across all the attention heads in
each layer and visualize the attention map for a query token,
e.g., the center token highlighted by the red box. In Fig-
ure 4, we show that RVT often incurs significant changes
in the attention maps. By contrast, our RSPC effectively
preserves most of the regions with relatively high attention
scores across layers. We also quantitatively evaluate the at-
tention stability by computing the cosine similarity between
the attention maps extracted from the clean and patch-based
corrupted examples. Here, we compute the cosine similar-
ity for each head in all the layers and then report the average
score over them. Figure 5 plots histograms of attention sim-
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Figure 4. Comparisons of attention stability between RVT-Ti and our RSPC-RVT-Ti. We adopt the same method as that in Figure 2 to
obtain the attention maps for visualization. In the last column, we also investigate the impact of different occlusion masks (1000 random
masks) on each example and quantitatively evaluate the stability using cosine similarity (Cos-Sim). Clearly, our RSPC model yields much
more stable attention maps both qualitatively and quantitatively.

Figure 5. Histogram of cosine similarity on intermediate attention
maps on ImageNet. For each image, we construct the corrupted
example using a random occlusion mask and compute the average
cosine similarity across layers. Clearly, our RSPC model yields
much more stable attentions than RVT.

ilarity scores across the whole validation set of ImageNet.
Clearly, RSPC increases the similarity both on average and
in the worst-case across the whole dataset. In addition, Fig-
ure 4 (last column) also studies impact of different occlu-
sion masks and shows the distribution of this score for two
example images, each with 1000 random occlusion masks.
Patch-based corruptions generated by C. We also visual-
ize the patch-based corruptions generated by our patch cor-
ruption model C in Figure 6. By maximizing the feature
alignment loss, the corruption model often identifies those
patches that have major contributions in the attention mech-
anism but on the other hand would make the attention very
unstable if they are corrupted. In practice, the patch corrup-
tion model tends to occlude the patches that are mainly lo-

cated in the key part of the object, e.g., the eyes of the dog
in the first example. Moreover, as detailed in supplemen-
tary, we also observe that the generated patch corruptions
often greatly reduce the confidence score. By contrast, as
we explicitly perform feature alignment against these patch
corruptions, our RSPC model still yields promising confi-
dence score and thus comes with better robustness.

5.2. More Results and Ablations

Comparisons with adversarial training methods. Both
RSPC and adversarial training (AT) exploit an adversarial
objective, but our they still have several essential differ-
ences. 1) They have different goals. AT learns pixel pertur-
bations and aims to improve adversarial robustness, while
putting less importance on accuracy (often with large drop)
and corruption robustness (marginal improvement). To be
specific, we compare a popular adversarial training method
TRADES [58] with various attack steps K = {1, 2, 3}.
From Figure 7, adversarial training is not very attractive due
to its large accuracy drop, marginal robustness improvement
against patch perturbations (e.g., Patch-Fool [13]) and cor-
ruptions on IN-C, and high training cost. By contrast, RSPC
learns which patches should be corrupted and finds a better
tradeoff between accuracy and robustness. 2) They produce
examples in different ways. AT iteratively optimizes pix-
els but RSPC learns to generate examples. Unlike AT with
multiple forward-backward propagations on the full model
F , RSPC produces examples more efficiently with single
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Figure 6. Visualization of the patch-based corrupted examples produced by the proposed patch corruption model. The corruption model
often identifies those patches that are often located at the key part of the object, e.g., face or body of an animal.
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Figure 7. Comparisons with adversarial training (TRADES with ϵ=1/255) on FAN-B-Hybrid. For mCE (last plot), lower is better. Clearly,
our RSPC model obtains a better tradeoff between accuracy and robustness than TRADES, along with significantly lower training cost.

forward propagation on a lightweight corruption model C
(∼80x faster than AT even with single iteration). 3) They
train models in different manners. AT trains alternatingly
by computing adversarial examples (via iterative optimiza-
tion) and then updating models in each iteration. By con-
trast, RSPC trains the model end-to-end and is much more
efficient than AT, as shown in Figure 7.
Patch selection strategy. As mentioned in Section 3.2, we
find the vulnerable patches to be occluded in an adversarial
way. To justify this, we compare our method with the ran-
dom patch selection strategy. Besides the baseline model,
we additionally compare the model trained on both clean
samples and the ones with patch corruptions. As shown in
Table 3, training with the adversarial patch selection strat-
egy greatly outperforms the random strategy on IN-C. This
experiment indicates that adversarially selecting patches to
introduce corruptions is particularly effective.
Effect of RSPC on diverse architectures. Besides RVT
and FAN, we apply our RSPC on top of more architectures,
including DeiT [48] and Swin [30]. Based on DeiT-Ti, we
greatly improve the robustness on IN-C and reduce the mCE
by 1.4% while yielding a promising improvement of 0.4%
on clean data. As for Swin-T, we obtain a similar obser-
vation that our RSPC is particularly effective in improving
corruption robustness, reducing mCE from 62.0% to 61.0%
(see details in supplementary). These results indicate that
our RSPC can generalize well across diverse architectures.

Training Method FAN-B-Hybrid
Imagenet IN-C ↓

Training on Clean Data (Baseline) 83.9 46.1 (-0.0)
Training on Both Clean and Corrupted Data 84.1 45.8 (-0.3)

RSPC on Randomly Selected Patches 84.1 45.6 (-0.5)
RSPC on Patches Selected by C 84.2 44.5 (-1.6)

Table 3. Comparisons of different strategies for feature alignment
on ImageNet and ImageNet-C (IN-C). We take RVT-B and FAN-
B-Hybrid as the baselines in this experiment. We show that finding
and occluding particularly vulnerable patches yields significantly
better robustness the random strategy while keeping comparable
accuracy with the baseline without the alignment loss.

6. Conclusion

In this paper, we study the robustness of transformer
models by investigating the sensitivity to the input patches.
For most self-attention modules, the features and the corre-
sponding attentions over them are very vulnerable, which,
however, contributes to the lack of overall robustness. To
alleviate this, we propose a new training method by ex-
plicitly reducing sensitivity to patch corruptions (RSPC).
Specifically, we develop a patch corruption model to iden-
tify the particularly vulnerable patches to be corrupted and
stabilize intermediate attention layers using feature align-
ment. In practice, RSPC greatly improves the stability of
self-attention as well as the overall robustness.
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