IAM

DAVIDSTUTZ

I am looking for full-time (applied) research opportunities in industry, involving (trustworthy and robust) machine learning or (3D) computer vision, starting early 2022. Check out my CV and get in touch on LinkedIn!

ARCHIVEMONTHLY»JUNE2020«

ARTICLE

ArXiv Pre-Print “On Mitigating Random and Adversarial Bit Errors”

Deep neural network (DNN) accelerators are specialized hardware for inference and have received considerable attention in the past years. Here, in order to reduce energy consumption, these accelerators are often operated at low voltage which causes the included accelerator memory to become unreliable. Additionally, recent work demonstrated attacks targeting individual bits in memory. The induced bit errors in both cases can cause significantly reduced accuracy of DNNs. In this paper, we tackle both random (due to low-voltage) and adversarial bit errors in DNNs. By explicitly taking such errors into account during training, wecan improve robustness significantly.

More ...

ARTICLE

Illustrating (Convolutional) Neural Networks in LaTeX with TikZ

Many papers and theses provide high-level overviews of the proposed methods. Nowadays, in computer vision, natural language processing or similar research areas strongly driven by deep learning, these illustrations commonly include architectures of the used (convolutional) neural network. In this article, I want to provide a collection of examples using LaTeX and TikZ to produce nice figures of (convolutional) neural networks. All the discussed examples can also be found on GitHub.

More ...