IAM

ARCHIVEMONTHLY»JANUARY2021«

ARTICLE

Recorded RobustAI Workshop Talk “Confidence-Calibrated Adversarial Training and Bit Error Robustness of DNNs”

In January, I had the opportunity to interact with many other robustness researchers from academia and industry at the Robust Artificial Intelligence Workshop. As part of the workshop, organized by Airbus AI Research and TNO (Netherlands applied research organization), I also prepared a presentation talking about two of my PhD projects: confidence-calibrated adversarial training (CCAT) and bit error robustness of neural networks to enable low-energy neural network accelerators. In this article, I want to share the presentation; all other talks from the workshop can be found here.

More ...

ARTICLE

Recorded FOCA’20 Talk “Bit Error Robustness for Energy-Efficient DNN Accelerators”

In October this year, I was invited to talk at IBM’s FOCA workshop about my latest research on bit error robustness of (quantized) DNN weights. Here, the goal is to develop DNN accelerators capable to operating at low-voltage. However, lowering voltage induces bit errors in the accelerators’ memory. While such bit errors can be avoided through hardware mechanisms, such approaches are usually costly in terms of energy and area. Thus, training DNNs robust to such bit errors would enable low-voltage operation, reducing energy consumption, without the need for hardware techniques. In this 5-minute talk, I give a short overview.

More ...

ARTICLE

Recorded ICML’20 Talk “Confidence-Calibrated Adversarial Training”

In our ICML’20 paper, confidence-calibrated adversarial training (CCAT) addresses two problems of “regular” adversarial training. First, robustness against adversarial examples unseen during training is improved and second, clean accuracy is increased. CCAT biases the model towards predicting low-confidence on adversarial examples such that adversarial examples can be rejected by confidence thresholding. This article shares my talk on CCAT as recorded for ICML’20.

More ...