IAM

Check out our latest research on weakly-supervised 3D shape completion.

TAG»C++«

ARTICLE

Implementing Torch Modules in C/CUDA

Torch is a framework for scientific computing in LUA. However, it has mostly been used for deep learning research as it provides efficient and comfortable C/CUDA implementations of a wide range of (convolutional and/or recurrent) neural network components. In this article, I want to provide a code template allowing to easily extend torch.nn by custom modules implemented in C and/or CUDA without knowledge of Torch’s core.

More ...

ARTICLE

A C++ Implementation of Mesh-to-Mesh Distance

In 3D vision, a common problem involves the comparison of meshes. In 3D reconstruction or surface reconstruction, triangular meshes are usually compared considering accuracy and completeness — the distance from the reconstruction to the reference and vice-versa. In this article, I want to present an efficient C++ tool for computing accuracy and completeness considering both references meshes as well as reference point clouds.

More ...

ARTICLE

Mesh Voxelization into Occupancy Grids and Signed Distance Functions

Triangular meshes are commonly used to represent various shapes in computer graphics and computer vision. However, for various deep learning techniques, triangular meshes are not well suited. Therefore, meshes are commonly voxelized into occupancy grids or signed distance functions. This article presents a C++ tool allowing efficient voxelization of (watertight) meshes.

More ...

ARTICLE

Watertight Meshes by Mesh Fusion

Automatically obtaining high-quality watertight meshes in order to derive well-defined occupancy grids or signed distance functions is a common problem in 3D vision. In this article, I present a mesh fusion approach for obtaining watertight meshes. In combination with a standard mesh simplification algorithm, this approach produces high-quality, but lightweight, watertight meshes.

More ...

ARTICLE

ArXiv Pre-Print Improved Weakly-Supervised 3D Shape Completion Code Released

We are releasing the code and data corresponding to our ArXiv pre-print on weakly-supervised 3D shape completion — a follow-up work on our earlier CVPR’18 paper. The article provides links to the GitHub repositories and data downloads as well as detailed descriptions. It also highlights the differences between the two papers.

More ...

19thMAY2018

PROJECT

Learning 3D shape completion under weak supervision; on ShapeNet, ModelNet, KITTI and Kinect data; published at CVPR and on ArXiv.

More ...

ARTICLE

CVPR’18 Weakly-Supervised Shape Completion Code Released

Finally, we are able to release the code and the data corresponding to our CVPR’18 paper on “Learning 3D Shape Completion from Laser Scan Data with Weak Supervision”. In this article, I want to briefly outline the released code and data.

More ...

ARTICLE

Compiling OpenCV 2.4.x with CUDA 9

Currently, both OpenCV 2 and OpenCV 3 seem to have some minor issues with CUDA 9. However, CUDA 9 is required for the latest generation of NVidia graphics cards. In this article, based on this StackOverflow question, I want to discuss a very simple patch to get OpenCV 2 running with CUDA 9.

More ...

17thDECEMBER2017

PROJECT

Weakly-supervised shape completion of cars on KITTI using variational auto-encoders; including two synthetic ShapeNet-based benchmark datasets.

More ...

ARTICLE

Inspecting Tensorflow’s Tensors using C++ and Bazel

Currently it is difficult to successfully link C++ projects with Tensorflow. However, to compile and run smaller code snippets based on Tensorflow, it might be convenient to put the code inside the tensorflow code base and compile an individual executable using Bazel.

More ...