IAM

DAVIDSTUTZ

TAG»COMPUTER VISION«

ARTICLE

Code Released: Conformal Training

The code for our ICLR’22 paper on learning optimal conformal classifiers is now available on GitHub. The repository not only includes our implementation of conformal training but also relevant baselines such as coverage training and several conformal predictors for evaluation. Furthermore, it allows to reproduce the majority of experiments from the paper.

More ...

17thAUGUST2022

PROJECT

Basic and advanced torch examples, template for implementing custom C/CUDA modules and implementations of variational auto-encoders.

More ...

16thAUGUST2022

PROJECT

3D mesh fusion, voxelization and evaluation for computer vision research.

More ...

ARTICLE

ICML 2022 Art of Robustness Paper “On Fragile Features and Batch Normalization in Adversarial Training”

While batch normalization has long been argued to increase adversarial vulnerability, it is still used in state-of-the-art adversarial training models. This is likely because of easier training and increased expressiveness. At the same time, recent papers argue that adversarial examples are partly caused by fragile features caused by learning spurious correlations. In this paper, we study the impact of batch normalization on utilizing these fragile features for robustness by fine-tuning only the batch normalization layers.

More ...

05thAUGUST2022

PROJECT

RESEARCH Fragile Features, Batch Normalization and Adversarial Training Outline Abstract Paper Poster News & Updates This is work led by Nils Walter. Quick links: Paper | Poster Abstract Modern deep learning architecture utilize batch normalization (BN) to stabilize training and improve accuracy. It has been shown that the BN layers alone are surprisingly expressive. In […]

More ...

04thAUGUST2022

PROJECT

Improving corruption and adversarial robustness by enhancing weak sub-networks.

More ...

ARTICLE

Code Released: Adversarial Robust Generalization and Flatness

The code for my ICCV’21 paper relating adversarial robustness to flatness in the (robust) loss landscape is now available on GitHub. The repository includes implementations of various adversarial attacks, adversarial training variants and “attacks” on model weights in order to measure robust flatness.

More ...

ARTICLE

Math Machine Learning Seminar of MPI MiS and UCLA Talk “Relating Adversarial Robustness and Weight Robustness Through Flatness”

In October, I had the pleasure to present my recent work on adversarial robustness and flat minima at the math machine learning seminar of MPI MiS and UCLA organized by Guido Montúfar. The talk covers several aspects of my PhD research on adversarial robustness and robustness in terms of the model weights. This article shares abstract and recording of the talk.

More ...

ARTICLE

Recorded ICCV’21 Talk “Relating Adversarially Robust Generalization to Flat Minima”

In October this year, my work on relating adversarially robust generalization to flat minima in the (robust) loss surface with respect to weight perturbations was presented at ICCV’21. As oral presentation at ICCV’21, I recorded a 12 minute talk highlighting the main insights how (robust) flatness can avoid robust overfitting of adversarial training and improve robustness against adversarial examples. In this article, I want to share the recording.

More ...

27thJULY2021

PROJECT

Random and adversarial bit error robustness of DNNs for energy-efficient and secure DNN accelerators.

More ...