Shiwei Shen, Guoqing Jin, Ke Gao, Yongdong Zhang. AE-GAN: adversarial eliminating with GAN. CoRR abs/1707.05474 (2017).

Shen et al. introduce APE-GAN, a generative adversarial network (GAN) trained to remove adversarial noise from adversarial examples. In specific, as illustrated in Figure 1, a GAN is traiend to specifically distinguish clean/real images from adversarial images. The generator is conditioned on th einput image and can be seen as auto encoder. Then, during testing, the generator is applied to remove the adversarial noise.

Figure 1: The proposed adversarial perturbation eliminating GAN (APE-GAN), see the paper for details.

Also find this summary on ShortScience.org.
What is your opinion on this article? Let me know your thoughts on Twitter @davidstutz92 or LinkedIn in/davidstutz92.