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Motivation: Uncertainty Estimation in Classification

e High-stakes and security-critical applications
e Rich structure of (hierarchical) classes
o
o

inter-observer variability

Rare classes or long-tailed class distribution
True ground truth unknown or uncertain

normal, - -, stroke, .-+, cancer, ---.
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MNIST  CIFAR-10 CIFAR-100 Caltech-256 ImageNet

X

. given: 5 given: cat given: lobster given: ewer given: it stork
Class index corrected: 3 corrected: frog corrected: crab  corrected: teapot corrected: black stork

# Occurrences
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Wang et al. Learning to Model the Tail, 2017; Karimi et al., Deep learning with noisy labels: exploring techniques and remedies in medical image analysis, 2020; Bates et al.,
Distribution-Free, Risk-Controlling Prediction Sets, 2021; Northcutt et al., Pervasive Label Errors in Test Sets
Destabilize Machine Learning Benchmarks, 2021.
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Talk Outline

Conformal prediction:

e Notation and background

Monte Carlo conformal prediction:

e Where does our ground truth for calibration come from?
e What if this ground truth is uncertain because annotators disagree?
e How can we handle this during calibration?

Paper: arxiv.org/abs/2307.09302



https://arxiv.org/abs/2307.09302
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Conformal Prediction

For model 7y, =~ p(y|z) construct confidence sets C(z) C [K]={1,...,K}
such that

plye C(x)) >1—a (coverage guarantee)

e confidence level v user-specified
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Conformal Prediction

For model 7y, =~ p(y|z) construct confidence sets C(z) C [K]={1,...,K}
such that

p(ye C(z)) >1—a (coverage guarantee)

confidence level «¢v user-specified

inefficiency = average confidence set size |C(z)|

requires exchangeability, independent of model and distribution
coverage marginal over examples!
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Split Conformal Prediction
Split conformal prediction with two steps: prediction and calibration:
1. Prediction (test time): define how confidence sets are constructed
C(z) :={k € [K]: E(z,k) :=mor(z) > 7}

with E(z, k) := mp () called conformity scores.
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Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with bounded error levels. Journal of the American
Statistical Association (JASA), 114(525):223-234, 2019.
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Split Conformal Prediction
Split conformal prediction with two steps: prediction and calibration:
1. Prediction (test time): define how confidence sets are constructed
C(z) :={k € [K] : E(z, k) := mox(z) = 0}

with E(x, k) := mpx(x) called conformity scores.
2. Calibration: define threshold 7 on N held-out calibration examples as
[a(N +1)]
N

-quantile of {E(x;, yi)}ie[N]
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Conformal p-values
Alternative view (will be important later):
1. We test the null hypothesis that k is the true label of test example :
Hy:y=k
2. Compute a p-value for this hypothesis using:

>oity O B(zi, i) < E(x, k)] +1
N+1

P =

3. Construct confidence set
C(z) ={ke |K]: pr > a}
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Example Results

Inefficiency | for different methods (82% base accuracy):

Dataset, « Thr APS RAPS
CIFAR10, 0.05 1.64 2.06 1.74
CIFARI10, 0.01/ 2.93 3.30 3.06
e
{airplane} {cat} {cat,horse,dog} {cat,frog} true class
coveragel/inefficiency yes/1 yes/1 no/3 yes/2

Yaniv Romano, Matteo Sesia, and Emmanuel J. Candes. Classification with valid and adaptive coverage. In Advances in Neural Information Processing Systems (NIPS), 2020.
Anastasios Nikolas Angelopoulos, Stephen Bates, Michael |. Jordan, Jitendra Malik:
Uncertainty Sets for Image Classifiers using Conformal Prediction. ICLR 2021
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Talk Outline

Monte Carlo conformal prediction:

e Where does our ground truth for calibration come from?
e What if this ground truth is uncertain because annotators disagree?
e How can we handle this during calibration?

Paper: arxiv.org/abs/2307.09302



https://arxiv.org/abs/2307.09302
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Obtaining Calibration Labels

Need conformity scores of the true labels E(x;, y;) for ;, yi; ~ p(x;, y; ):

Unknown
true label

Observation

?

Yi = bird?

Yi L



Obtaining Calibration Labels

Need conformity scores of the true labels E(z;, y;) for ;, y; ~ p(zi, y;)

Unknown Observation
true label

Annotations
?

Distribution of human annotations

Majority vote
10 I > cat birel?

\Q\ ,,ﬁ'oo *0 z 6)@ '6° (}' ‘;\Q 0(.

Count

Class
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Calibration Against Majority Voted Labels

Need conformity scores of the true labels E(x;, y;) for ;, yi; ~ p(x;, y; ):

Observation Annotations

Distribution of human annotal

Majority vote
I I cat

0 6«&‘ (’t$‘

e We have access to majority voted labels Yvote ™~ Pvote (y \«’B)
e For this example, clearly Pvote 7 P
e Butwe need ”pyote = P” to guarantee coverage w.rt. p



A Simple Example

w"y ~ p(ma y)

08 C )| ® Class0
® Class1
o © Class?2

0.6
o
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X 0.4 - "
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0.2
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0.2 0.4 0.6 0.8 1.0
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A Simple Example
Ly Y~ p(ma y)

unobserved x2

0.2 0.4 0.6 0.8 1.0
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A Simple Example

x"y ~ p(ma y)

C ® Class0
® Class1
o © Class?2

e In practice, we never observe these true labels
(we cannot calibrate against them or obtain coverage against them)
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A Simple Example

ambiguous
oo p(m, y) example
.‘ T ° ® Class0 0.8
e Class1
e ® Class?2 0.6

“crisp”
example

e Ambiguity is captured in the true posteriors p(y|a:)
e In practice, we usually do not observe the true posteriors either



A Simple Example
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z,y ~ p(z, y) p(y|) T, Y ~ Pvote (T, Y)

° @ Class0 0.8 ° 0.8

® Class1

e ® Class?2 0.6 0.6
)

L] ® —
° ®o X 0.4 X 0.4
o .‘. [

®0®

L 0.2 0.2

o o ° 0.0 0.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4

e The “majority voted” label yyote ~ Pvote (¥|Z) ignores uncertainty
e We can calibrate and obtain coverage against Pvote 7 P

® ClassO0
® Class1
e ® Class2

0.6 0.8 1.0



A Serious Example

Observation

Annotations

b': {Pyogenic granuloma (Low)} {Hemangioma ( )}
{Melanoma (High)}

b? {Angiokeratoma of skin (Low)} {Atypical Nevus ( )}

b3: {Hemangioma ( )} {Melanocytic Nevus (Low), Melanoma
(High), O/E - ecchymoses present (Low)}

b*: {Hemangioma ( ), Melanoma (High), Skin Tag (Low)}

b®: {Melanoma (High)}

b®: {Hemangioma ( )} {Melanoma (High)} {Melanocytic
Nevus (Low)}

Conditions, Low/ /High risk conditions
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A Serious Example

Observation

Annotations

b': {Pyogenic granuloma (Low)} {Hemangioma ( )}
{Melanoma (High)}

b? {Angiokeratoma of skin (Low)} {Atypical Nevus ( )}

b3: {Hemangioma ( )} {Melanocytic Nevus (Low), Melanoma
(High), O/E - ecchymoses present (Low)}

b*: {Hemangioma ( ), Melanoma (High), Skin Tag (Low)}

b®: {Melanoma (High)}

b®: {Hemangioma ( )} {Melanoma (High)} {Melanocytic
Nevus (Low)}

Conditions, Low/ /High risk conditions

Majority vote

l Hemangioma
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A Serious Example

Observation

Annotations

b': {Pyogenic granuloma (Low)} {Hemangioma ( )}
{Melanoma (High)}

b? {Angiokeratoma of skin (Low)} {Atypical Nevus ( )}

b3: {Hemangioma ( )} {Melanocytic Nevus (Low), Melanoma
(High), O/E - ecchymoses present (Low)}

b*: {Hemangioma (/=cl), Melanoma (High), Skin Tag (Low)}

b®: {Melanoma (High)}

b®: {Hemangioma ( )} {Melanoma (High)} {Melanocytic
Nevus (Low)}

Conditions, Low/ /High risk conditions

Majority vote

l Hemangioma

J

Ignores a cancerous

condition
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Embracing Ambiguity in Conformal Prediction

Use annotations directly — for example, in terms of aggregated frequencies:

Observation Agg. Annotations Observation  Agg. Annotations

Distribution of human annotal

S "‘\v @&6‘“@(3‘

Pagg ~ D

e Aggregating annotations is our best option to approximate the true p
(we can only be as good in this tasks as our expert annotators are)
e How can we calibrate for and evaluate coverage w.r.t. Pagg ?
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Aggregated Coverage for a Single Example
Call estimates of Aix = Page (v = k|xi) =~ p(y|zi) plausibilities:

Distribution of human annotations

2 \ =(0,0,0.32,0.46,0.02, 016, 0.04, 0, 0, )
E 15 C (a;) = {cat, dog} - do we have coverage?

10

5 I Majority-voted coverage | 1

"o £ & ; & ;&(‘,@&\Q‘é& Aggregated coverage 0.62=0.46 + 0.16

P & >
Class

“Covered plausibility mass”
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Aggregated Coverage with Plausibilities

Call estimates of Aix = Page (y = k|zi) ~ p(y|zi) plausibilities:

Pagg(y € C(z))

AN

Guarantee coverage “against annotations”



Proprietary + Confidentia

Aggregated Coverage with Plausibilities

Call estimates of Aix = Page (y = k|zi) ~ p(y|zi) plausibilities:

Pagg(y € C(z)) = Ep, [0y € C(2)]]

|

Binary event, express as expectation
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Aggregated Coverage with Plausibilities

Call estimates of Aix = Page (y = k|zi) ~ p(y|zi) plausibilities:

Page(y € C(z)) = Ep, [0y € C(2)]]

= g yp(2)p,(vl2) Oly € C(z)]]

Decompose joint probability



Aggregated Coverage with Plausibilities

Call estimates of Aix = Page (y = k|zi) ~ p(y|zi) plausibilities:

Pagg(y € C(x)) = Ep,[0ly € C(z)]]
= Eo yp(@)p,vie) [0y € C(@)]]

— Exwp(a:) [Epragg(y|x) [5[?/ < C(w)]”

& J
Y

Distribute coverage across plausibilities —— Z Adlk € C(z)]
k

Proprietary + Con fidential



Aggregated Coverage with Plausibilities

Call estimates of Aix = Dage (¥ = kl|xi) =~ p(y|z:) plausibilities:

Pagg(y € C(x)) = Ep,[0ly € C(z)]]
= Eo yp(@)p,vie) [0y € C(@)]]

— ]Exwp(a:) []Epragg(y|x) [5[y < C(w)]”

& J
Y

Distribute coverage across plausibilities —— Z Adlk € C(z)]
k

-> Coverage is marginal over examples and labels!
-> If Pagg = P, this is coverage wrt. the true labels!

Proprietary + Confidentia
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Calibrating with Voted Labels

Voted labels - Calibrate with voted labels
0.8 - | ® Class0 P — Target
S EV8|Uate Standard 014 Il Coverage of true labels

e ® Class2 0.12

0.6 Y7 . mmm Coverage of voted labels

. coverage” with | 5010

c

® @
% 04 Se voted labels | 3o
®e0 2 0.06
0.2 0.04
U.UZ
0.0 0.00

0.2 0.4 0.6 0.8 1.0 0.86 0.88 0.90 0.92 0.94 0.96

x0 Empirical coverage
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Calibrating with Voted Labels

Voted labels - Calibrate with voted labels

0.8 ® Class0 P — Target
L jeless EV8|Uate Standard 0-14 Il Coverage of true labels
0.6 oo Class2 17 . 0.12 mmm Coverage of voted labels
. coverage” with | 5010
= 0.4 °e voted labels :;")0.08 True labels
%%ee & 00 I under-covered
0.2 ® 0.04
0.0 0:00 |
0.2 0.4 0.6 0.8 1.0 0.86 0.88 0.90 0.92 0.94 0.96
x0 Empirical coverage

Plausibilities = true posteriors
Evaluate aggregated coverage
(= true coverage as Pagg =P )

0.8
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Calibrate Against Sampled Labels

Basic idea:

e Use plausibilities for calibration: Aix = Page (v = k|zi) =~ p(y|z:)
e Repeat each calibration example M times
e Standard calibration using the augmented calibration set

{E(zi, yij) bic[N),jepy With Yij ~ Pagg (Yij = Klzi) = Aik
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Calibrate Against Sampled Labels

Basic idea:

e Use plausibilities for calibration: Aix = Page (v = k|zi) =~ p(y|z:)
e Repeat each calibration example M times
e Standard calibration using the augmented calibration set

{E(i, Yij) Yieiv) jepng With  Yij ™ Pagg (Yi; = klzi) = ik
Problem:
e Invalidates coverage by breaking exchangeability:

p(z11, 212, 213, - - - 5 221, - - - , ZNM, 2) fOr zij = (%, ¥ij) and test example z

| know the first M examples are repeated
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Monte Carlo Conformal Prediction

Solution:

e Use plausibilities for calibration: Aix = Page (v = k|zi) =~ p(y|z:)
e Repeat each calibration example M times
Calibrate using the augmented calibration set

{E(zi, yij) Yiein jepy With Yij ™ Pagg (Yi; = klzi) = ik
e Adjust quantile computation to

(N +1)] laM(N+1)] —M+1

N MN
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Obtaining Coverage 1 — 2«

Consider the p-values computed for standard conformal prediction:

Zz_® o[ E fBz, vij) < E(x, k)] +1

N+1




Fixing Coverage
Consider the p-values computed for standard conformal prediction:

_ S35 O[B(xi, yij) < E(z, k)] 1

N




Fixing Coverage

Consider the p-values computed for standard conformal prediction:

Sty St O[B(xi, yij) < Bz, k)] + 1
M-N+1

Pk =

fj ol o — Sy O[E(i, i;-j) < E(x, k)]

Proprietary + Confidentia



Fixing Coverage

Consider the p-values computed for standard conformal prediction:

Sty St O[B(xi, yij) < Bz, k)] + 1
M-N+1

Pk =

ipj j ! sz\il 5[E($iyyij) < E(x, k)] 41
o~ o N+1

Proprietary + Confidentia
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Obtaining Coverage 1 — 2«

Consider the p-values computed for standard conformal prediction:

B Zf\il 23{1 0[E(zi, yij) < E(z, k)] + 1

Pk M D)
‘% M(N + 1)
R o ;XN 1B, yy) < Bz, K) +1
M j=1 ’ P N+1

- Vovk and Wang establish coverage 1 — 2a when averaging p-values



https://academic.oup.com/biomet/article-abstract/107/4/791/5856302?redirectedFrom=fulltext
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Coverage Beyond 1 — 2«

Monte Carlo conformal prediction:

e Can be re-formulated as averaging M p-values
e This establishesa 1 — 2a coverage guarantee
e Canimproveto (1 — a)(1 — é) for § > 0 with additional calibration split

Remarks:

Empirically, we always observe coverage 1 — a

Without ambiguity, we recover standard conformal prediction (any M)
Ambiguous examples: we improve coverage by sacrificing efficiency
Unambiguous examples: it behaves like standard conformal prediction
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Results in Dermatology

CP wu.r.t. pvote

0.125 — Target
Il \oted covgrage

0.100
0.075
0.050
0.025 I
0.000 I—I

0.60

0.65 0.70 0.75
Empirical coverage

Frequency

> 0.15 - Average: 2.66
(&}
$ 0.10
=)
o B
oo Miselle
N = LSS
23 24 25 26 27 28 29 3.0

Inefficiency



Results in Dermatology

CP w.rt. pvote

0.125 — Target
I \oted covgrage
0.100
> B Aggrega
@ 0.075
oo )
o
L 0.050
T
0.025 I
0.000
0. 65 0.70 0.75
Empirical coverage
> 0.15 -  Average: 2.66
(&)
g 0.10
>
o
Lg_ 0.05 I I I
PR—— | II.III
23 24 25 2.7 i

Ineffucnency
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Monte Carlo CP w.r.t. Pagg

0.125

0.100

Frequency
© o o
o o o
N w ~
w o w

0.000
0.700 0.725 0.750 0.775 0.800 0.825 0.850
Empirical coverage
> g |—— Average:4.57 Cosfgio handle ambiguity
2o
o
[ ‘
L—
4.2 4.4 4.8 5.0

Inefficiency



Qualitative Results in Dermatology

N
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0.25

0.00

1.00
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CP w.r.t. pvote

lausibilities

onfidence set (0.41) I I
. N . =
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ausibilities
onfidence set (0.40)
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Classes
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Monte Carlo CP w.r.t. Pagg

- PI
(0.79)

Hema Mela Angi

ausibilities
onfidence set (0.60)

Arte Calc

Cell

Pyog Skm Mela Atyp O/E

Classes

Pyod Veno Absc Acan Acan
Classes
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Conclusion for Monte Carlo CP
= conformal prediction based on sampled labels from annotators/plausibilities.

e The labels we have access to are usually voted labels, from Pvote
e In ambiguous settings, voted labels can deviate from true labels:

Pvote ?é P

e Monte Carlo conformal prediction samples labels from Pagg ~ P

e The best we can do: “calibrate wrt. to annotators”

e Establishes coverage guarantees for multi-label classification and
calibration with data augmentation

Paper: arxiv.org/abs/2307.09302 | Contact: davidstutz.de / dstutz@google.com



https://arxiv.org/abs/2307.09302
https://davidstutz.de/

