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Promise: you will start to question any 
“ground truth” labels you come across!

``Bird”, “cat”, or “frog”?

“Hemangioma” or “Melanoma”?
Benign or cancer?
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Observation AI prediction

“bird”

Unknown 
true label

?

Annotations

?

Annotators disagree!

Joshua C. Peterson*, Ruairidh M. Battleday*, Thomas L. Griffiths, & Olga Russakovsky. Human uncertainty makes classification more robust. ICCV’19. 
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Observation AI prediction

“bird”

Unknown 
true label

?

Annotations

Incorrect!
“cat”

Majority vote

Ignores
disagreement!
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Unknown 
true label

?

Observation

b1: {Pyogenic granuloma (Low)} {Hemangioma (Med)} 
{Melanoma (High)} 
b2 {Angiokeratoma of skin (Low)} {Atypical Nevus (Med)} 
b3: {Hemangioma (Med)} {Melanocytic Nevus (Low), 
Melanoma (High), O/E - ecchymoses present (Low)} 
b4: {Hemangioma (Med), Melanoma (High), Skin Tag (Low)} 
b5: {Melanoma (High)} 
b6: {Hemangioma (Med)} {Melanoma (High)} {Melanocytic 
Nevus (Low)}

Conditions, Low/Med/High risk conditions

Annotations

Y. Liu et al. A deep learning system for differential diagnosis of skin diseases. Nature Medicine, 2020.
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Unknown 
true label

?

Observation

b1: {Pyogenic granuloma (Low)} {Hemangioma (Med)} 
{Melanoma (High)} 
b2 {Angiokeratoma of skin (Low)} {Atypical Nevus (Med)} 
b3: {Hemangioma (Med)} {Melanocytic Nevus (Low), 
Melanoma (High), O/E - ecchymoses present (Low)} 
b4: {Hemangioma (Med), Melanoma (High), Skin Tag (Low)} 
b5: {Melanoma (High)} 
b6: {Hemangioma (Med)} {Melanoma (High)} {Melanocytic 
Nevus (Low)}

AI prediction

“Hemangioma”
?

Annotations

Majority voting is non-trivial
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Unknown 
true label

?

Observation

b1: {Pyogenic granuloma (Low)} {Hemangioma (Med)} 
{Melanoma (High)} 
b2 {Angiokeratoma of skin (Low)} {Atypical Nevus (Med)} 
b3: {Hemangioma (Med)} {Melanocytic Nevus (Low), 
Melanoma (High), O/E - ecchymoses present (Low)} 
b4: {Hemangioma (Med), Melanoma (High), Skin Tag (Low)} 
b5: {Melanoma (High)} 
b6: {Hemangioma (Med)} {Melanoma (High)} {Melanocytic 
Nevus (Low)}

AI prediction set

“Hemangioma”

?

Annotations

“Atypical 
Nevus”

“Melanocytic 
Nevus”
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Observation AI prediction

“bird”

Unknown 
true label

?

Annotations

Incorrect!
“cat”

Unknown 
true label Observation Annotations AI model

Standard metric

Majority vote

Majority vote
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Unknown 
true label Observation Annotations AI model

Standard metric

Inherent uncertainty

Inherent uncertainty = limited observational information:
(typically called data uncertainty)

● Low-resolution images in image recognition (e.g., CIFAR10)
● Single 2D view in 3D reconstruction
● Missing meta information or no option to question the patient in health
● …

TL;DR:               is not one-hot and has high entropy!

Majority vote
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Unknown 
true label Observation Annotations AI model

Standard metric

Inherent uncertainty Annotation uncertainty

Annotation uncertainty = uncertainty induced through human annotators:

● Subjective tasks
● Inexperience of annotators
● Insufficient training of annotators
● Inappropriate annotation tool
● Different biases or background from annotators

TL;DR: annotation is difficult and we have to trust experts.

Majority vote
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Unknown 
true label Observation Annotations AI model

Standard metric

Inherent uncertainty Annotation uncertainty

Majority vote

Ground truth uncertainty = inherent + annotation uncertainty

● We observe both through annotator disagreement
● Often impossible to disentangle inherent and annotation uncertainty
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Unknown 
true label Observation Annotations AI model

Standard metric

Inherent uncertainty Annotation uncertainty

Majority vote

Ground truth uncertainty = inherent + annotation uncertainty

● We observe both through annotation disagreement
● Usually we cannot disentangle between inherent and annotation uncertainty

Inherent
uncertainty

Annotation
uncertainty
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Unknown 
true label Observation Annotations AI model

Standard metric

Inherent uncertainty Annotation uncertainty Conventional deterministic aggregation

Label

Simple majority voting or deterministic 
aggregation ignores this uncertainty
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Unknown 
true label Observation Annotations AI model

Standard metric

Inherent uncertainty Annotation uncertainty Conventional deterministic aggregation

Label

Deterministic aggregation ignores ground truth uncertainty:

● Ignores large parts of the annotators
● Might evaluate against the wrong labels
● Does not quantify uncertainty on top of metrics



Confidential — Google DeepMind

Can we use a statistical aggregation model to account for uncertainty?

● Statistical aggregation of annotations
● Adjust evaluation metrics by uncertainty

Deterministic aggregation ignores uncertainty

Unknown 
true label Observation Annotations AI model

Inherent uncertainty Annotation uncertainty

Label

Statistical aggregation?

Adjusted metric?
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Unknown 
true label Observation Annotations AI model

Standard metric

Inherent uncertainty Annotation uncertainty Conventional deterministic aggregation

Label

Deterministic aggregation:
➔ Might evaluate against the 

wrong labels
➔ Ignores large parts of the 

annotators
➔ Does not quantify 

uncertainty on top of metrics
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Observation Annotations Plausibilities
?

Deterministic aggregation approximates posterior
using a point estimate   

● “Plausibilities” = how plausible is a label given the annotations
● In this talk: categorical distributions over classes

AI prediction

“bird”
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Example cases

Inherent uncertainty = 
location on simplex

True plausibilities
♢ = 
on 3-simplex
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True plausibilities
♢ = 
on 3-simplex

“Annotators see 
more or less accurately”

Annotations
Deterministic 
aggregation

=
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True posterior
♢ = 
on 3-simplex

Annotations
Deterministic 
aggregation

Different annotators yield 
different plausibilities

=

Annotation uncertainty = 
spread of plausibilities
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True posterior
♢ = 
on 3-simplex

Annotation model
Statistical aggregation 

model
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True posterior
♢ = 
on 3-simplex

Reliability    = lower or higher 
prior trust in annotators
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Ground truth uncertainty on the simplex:

● Location of plausibilities on simplex = inherent uncertainty
● Spread of plausibilities = annotation uncertainty
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Statistically modeling aggregation:

● Allows to disentangle inherent and annotation uncertainty to some extent
(subject to modeling assumptions, depending on reliability)

● Avoids expensive re-annotation to get uncertainty estimates

Never observe 
the diamonds ♢

AI model

?
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Unknown 
true label Observation Annotations

Standard metric

Inherent uncertainty Annotation uncertainty Conventional deterministic aggregation

Label

Plausibilities Distribution
over labels

Proposed statistical aggregation and uncertainty-adjusted evaluation

Uncertainty-adjusted 
metric

AI model
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● How certain is it that y is the top-1 label?

Certainty(Cancer) Certainty(Benign2) Certainty(Benign1)
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● How certain is it that y is the top-1 label?

● What is the highest certainty across labels?

Certainty(Cancer) Certainty(Benign2) Certainty(Benign1)
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● Can also quantify certainty of label sets     : 

Certainty({Cancer, Benign2}) Certainty({Cancer, Benign2}) Certainty({Benign1, Benign2})
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● How certain is it that y is the top-1 label?

● What is the highest certainty across labels?



Confidential — Google DeepMindMeasuring annotation uncertainty

● Annotation certainty on toy example for different reliabilities    : 

Different reliabilities

Top-1 label uncertain irrespective of 
how much we trust our annotators
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● 178 examples with annotation certainty < 99%
● This is ~0.2% of all CIFAR10 test examples

● Annotation certainty on CIFAR10 using annotations from CIFAR10-H:
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Papers with Code leaderboard:

µ2Net 99.49 2022

ViT-L/16 99.42 2020

CaiT-M-36 U 224 99.4 2021

CvT-W24 99.39 2021

BiT-L 99.37 2019

ViT-B 99.3 2022

~0.2% of CIFAR10 test 
examples uncertain

Improvements 
within 0.2%

● Annotation certainty on CIFAR10 using annotations from CIFAR10-H:

https://paperswithcode.com/sota/image-classification-on-cifar-10
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Given a model that yields a top-k prediction set                   :
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Given a model that yields a top-k prediction set                   :

●                   = original CIFAR10 labels (k = 1)
➔ Even CIFAR10 labels perform poorly on 

uncertain examples!
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Observation Annotations

b1: {Pyogenic granuloma (Low)} {Hemangioma (Med)} {Melanoma (High)} 
b2 {Angiokeratoma of skin (Low)} {Atypical Nevus (Med)} 
b3: {Hemangioma (Med)} {Melanocytic Nevus (Low), Melanoma (High), 
O/E - ecchymoses present (Low)} 
b4: {Hemangioma (Med), Melanoma (High), Skin Tag (Low)} 
b5: {Melanoma (High)} 
b6: {Hemangioma (Med)} {Melanoma (High)} {Melanocytic Nevus (Low)}

Partial rankings to model differential diagnoses
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Observation Annotations Plausibilities

Task: predict dermatological conditions from images.

● Inverse rank normalization (IRN) to aggregate annotators’ differential diagnoses.

argmax

Top-1 label = Hemangioma
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Observation Annotations Plausibilities

Task: predict dermatological conditions from images.

● Plackett-Luce or probabilistic IRN (PrIRN) to model 
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Observation Annotations Plausibilities

Task: predict dermatological conditions from images.

● Plackett-Luce or probabilistic IRN to model 

Top-1 condition changes easily
= low annotation certainty

3rd, 4th, 5h conditions also 
change easily



Confidential — Google DeepMind

● Significant portions of cases with high annotation uncertainty:

➔ In discussions with dermatologists often attributed to inherent 
uncertainty

High annotation uncertainty
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● Across cases / per plausibility:

➔ Significant variation in top-3 accuracy

Uncertainty-adjusted top-3 accuracy
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● UA accuracy varies 
significantly by reliability

● IRN implicitly evaluates 
infinite annotator reliability

● Large spread/uncertainty in 
accuracies (shaded)
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● Alternative statistical aggregation models exhibit different results:

➔ Aggregation is a mode choice usually not made explicit!

Alternative statistical aggregation methods

PrIRN Plackett-Luce
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Calibration usually based on ground truth labels on a calibration/validation set:

● Conformal prediction uses ground truth labels to calibrate a softmax threshold
● Threshold used to predict confidence sets of classes at test time instead of the top-k:

● We propose Monte Carlo conformal prediction to calibrate directly against the annotations
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Proposed a statistical framework for dealing with ground truth uncertainty:

➔ Ground truth uncertainty =
inherent + annotation uncertainty
(location + spread of plausibilities)

➔ Annotation certainty explicitly measures
annotation uncertainty

➔ Uncertainty-adjusted metrics to evaluate
and evaluate models

Conclusion

Plausibilities Distribution
over labels

Proposed statistical aggregation and uncertainty-adjusted evaluation

Uncertainty-
adjusted metric

Unknown 
true label Observation Annotations

Inherent
uncertainty

Annotation
uncertainty

AI model

More: arxiv.org/abs/2307.02191 | arxiv.org/abs/2307.09302 | davidstutz.de | dstutz@google.com

https://arxiv.org/abs/2307.02191
https://arxiv.org/abs/2307.09302
https://davidstutz.de
mailto:dstutz@google.com

