Google DeepMind

Evaluation and calibration of Al models with *uncertain* ground truth

David Stutz

a collaboration between Google DeepMind and Health

Outline

Contents:

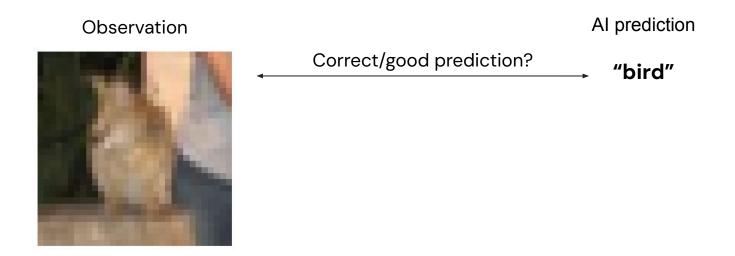
- Uncertainty from annotator disagreement
- Statistical framework
- Measuring uncertainty
- Evaluating AI models
- ☐ Case study in dermatology:
 - Results
 - Bonus: calibration
- Conclusion and outlook

Promise: you will start to question any "ground truth" labels you come across!

"Bird", "cat", or "frog"?

"Hemangioma" or "Melanoma"?

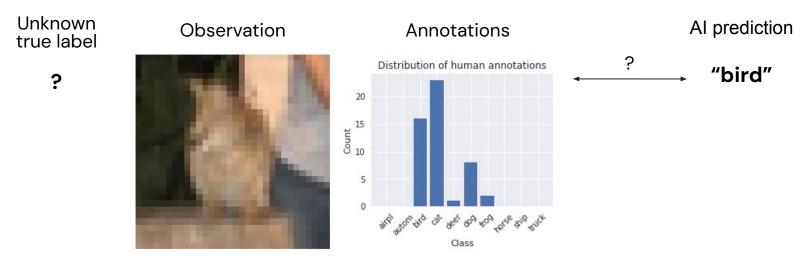
Benign or cancer?



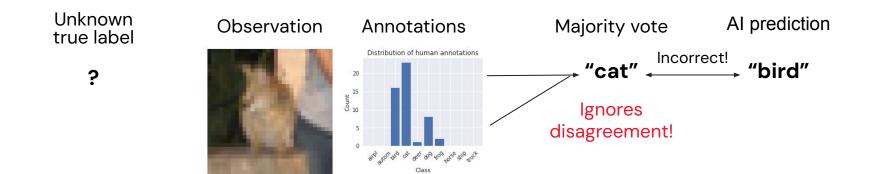
Unknown true label

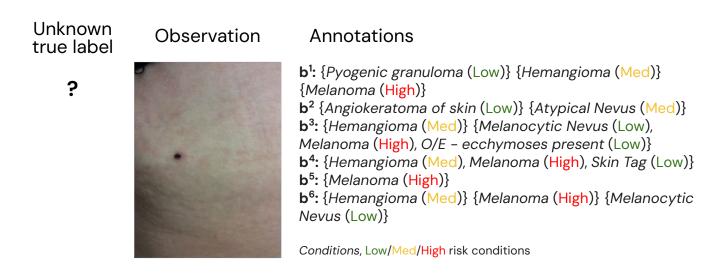
Correct/good prediction?

bird

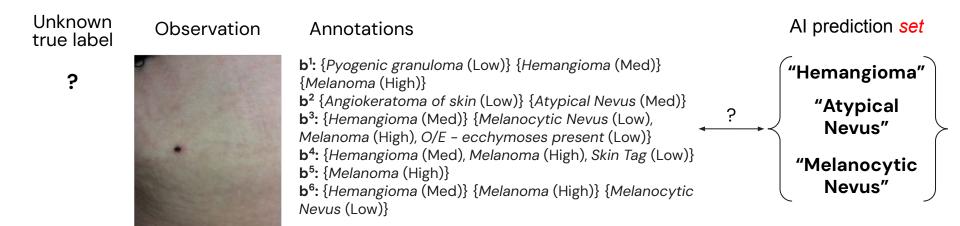


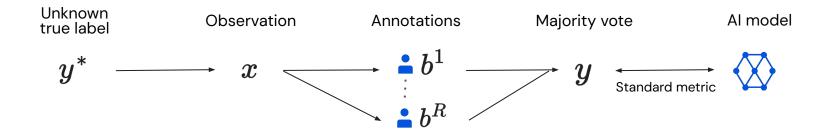
Annotators disagree!

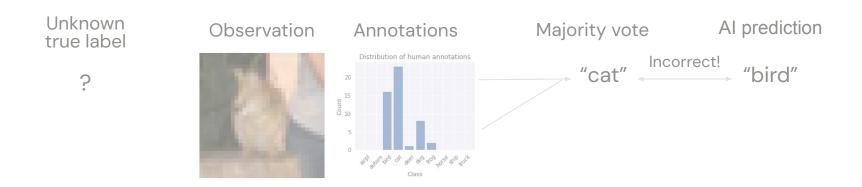




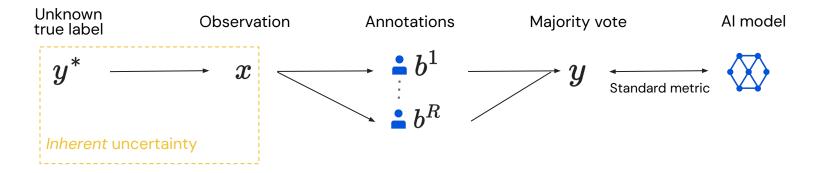








Inherent uncertainty

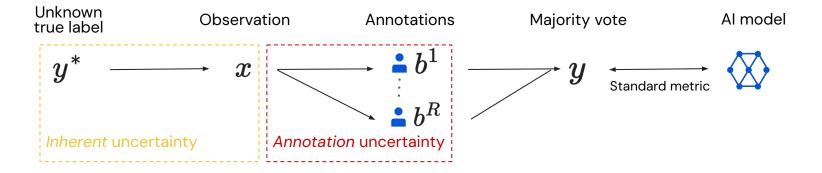


Inherent uncertainty = limited observational information: (typically called data uncertainty)

- Low-resolution images in image recognition (e.g., CIFAR10)
- Single 2D view in 3D reconstruction
- Missing meta information or no option to question the patient in health
- ...

TL;DR: $p(y^*|x)$ is not one-hot and has high entropy!

Annotation uncertainty

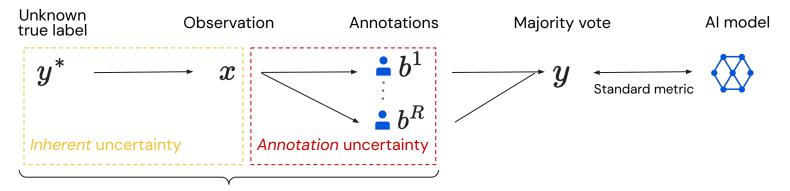


Annotation uncertainty = uncertainty induced through human annotators:

- Subjective tasks
- Inexperience of annotators
- Insufficient training of annotators
- Inappropriate annotation tool
- Different biases or background from annotators

TL;DR: annotation is difficult and we have to trust experts.

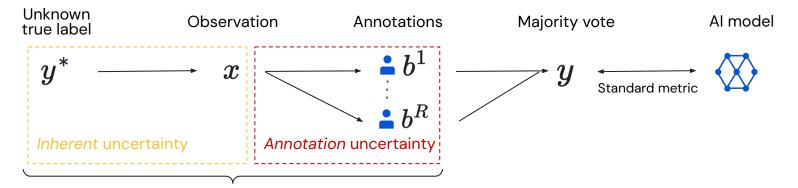
Ground truth uncertainty



Ground truth uncertainty = inherent + annotation uncertainty

- We observe both through annotator disagreement
- Often impossible to disentangle inherent and annotation uncertainty

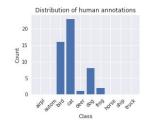
Ground truth uncertainty



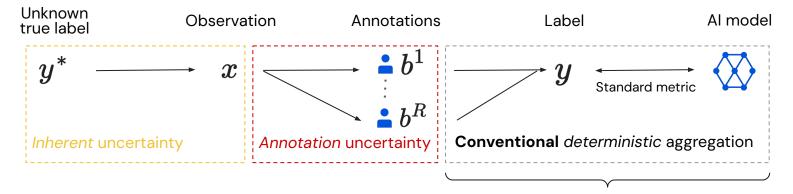
Ground truth uncertainty = inherent + annotation uncertainty

- We observe both through annotation disagreement
- Usually we cannot disentangle between inherent and annotation uncertainty

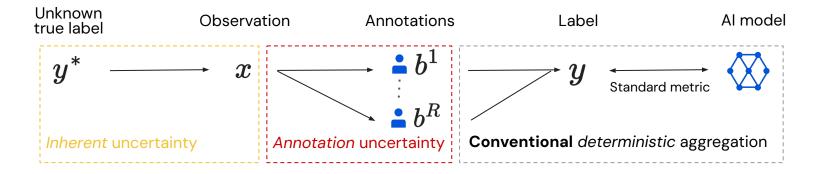
Inherent uncertainty



Annotation uncertainty

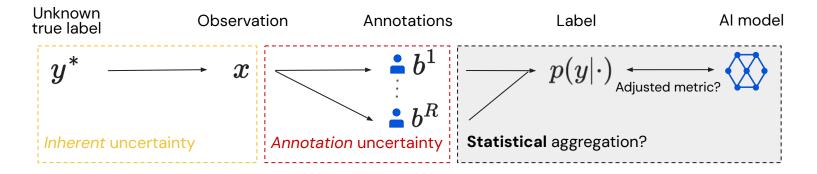


Simple majority voting or deterministic aggregation ignores this uncertainty



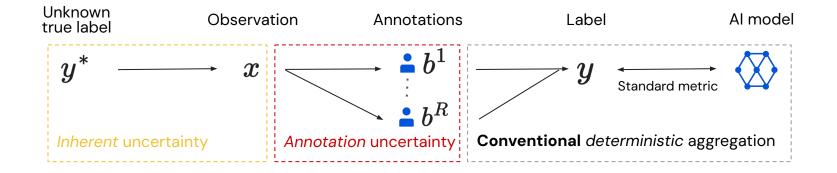
Deterministic aggregation ignores ground truth uncertainty:

- Ignores large parts of the annotators
- Might evaluate against the wrong labels
- Does not quantify uncertainty on top of metrics



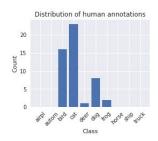
Can we use a statistical aggregation model to account for uncertainty?

- Statistical aggregation of annotations
- Adjust evaluation metrics by uncertainty

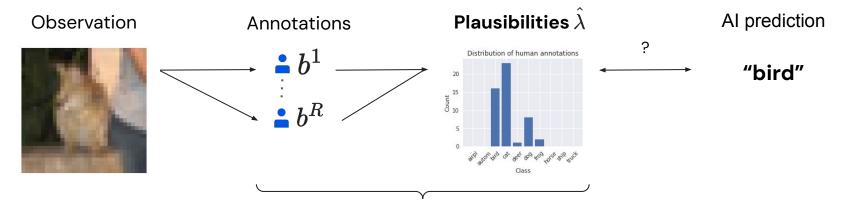


Deterministic aggregation:

- Might evaluate against the wrong labels
- → Ignores large parts of the annotators
- → Does not quantify uncertainty on top of metrics



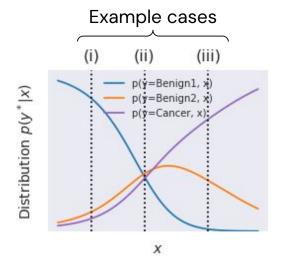
Introducing plausibilities

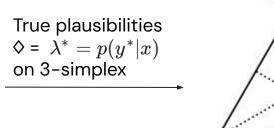


Deterministic aggregation approximates posterior $p(y^*|x)$ using a point estimate $\hat{\lambda}$

- "Plausibilities" = how *plausible* is a label given the annotations
- In this talk: categorical distributions over classes

Plausibilities on one-dimensional toy example





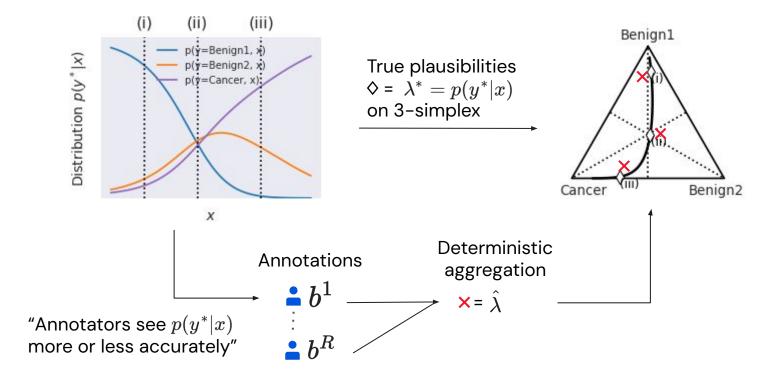
Inherent uncertainty = location on simplex

Cancer

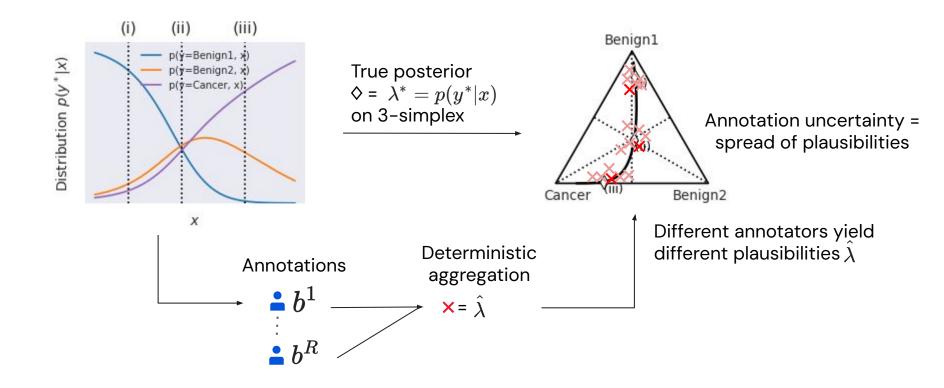
Benign2

Benign1

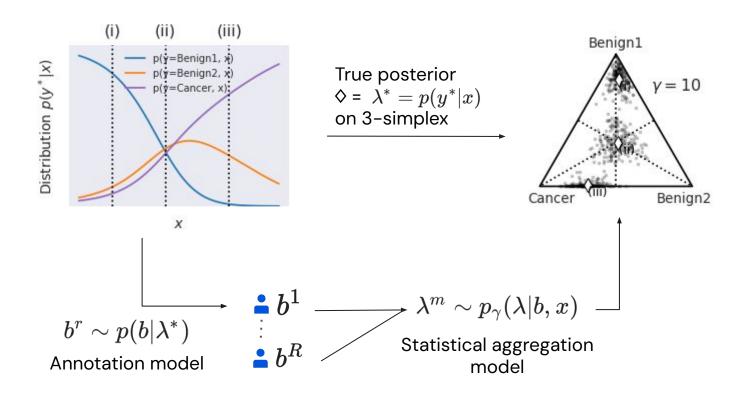
Point estimates from deterministic aggregation



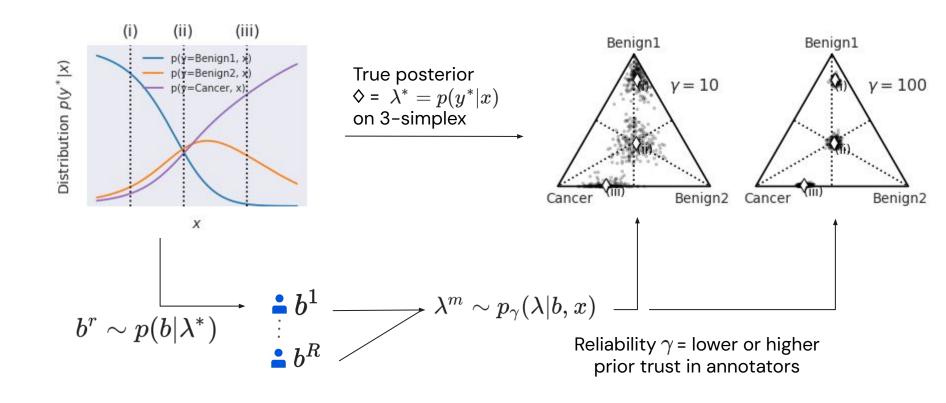
Variation in plausibilities through re-annotating



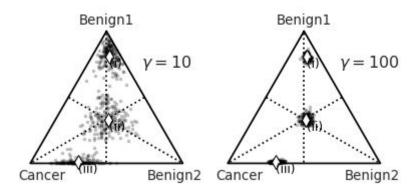
Statistical aggregation



Annotator reliability in statistical aggregation



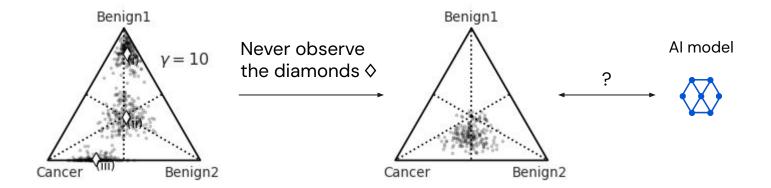
Conclusion: plausibilities on toy example



Ground truth uncertainty on the simplex:

- Location of plausibilities on simplex = inherent uncertainty
- Spread of plausibilities = annotation uncertainty

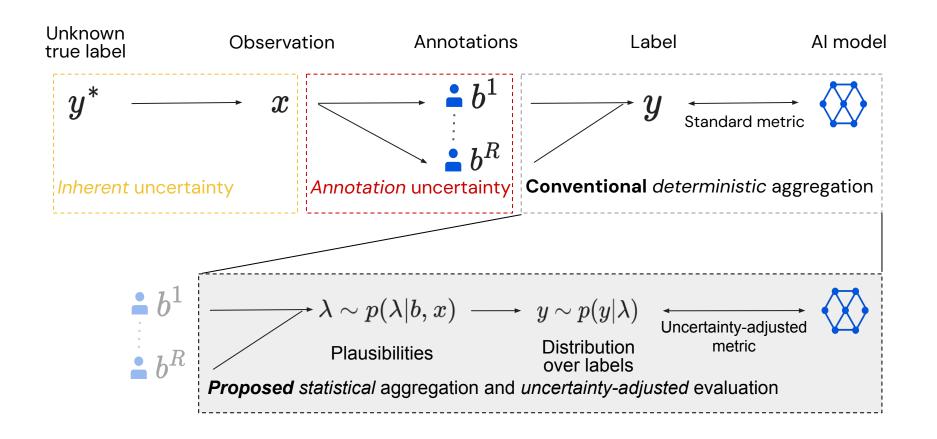
Conclusion: plausibilities on toy example



Statistically modeling aggregation:

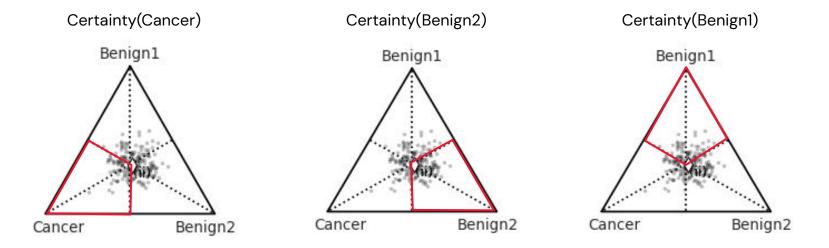
- Allows to disentangle inherent and annotation uncertainty to some extent (subject to modeling assumptions, depending on reliability)
- Avoids expensive re-annotation to get uncertainty estimates

Summary: proposed statistical framework



• How certain is it that y is the top-1 label?

$$ext{Certainty}(y;b,x) = \mathbb{E}_{p(\lambda|b,x)}\left[\delta[y = rg\max_j \lambda_j]
ight]$$

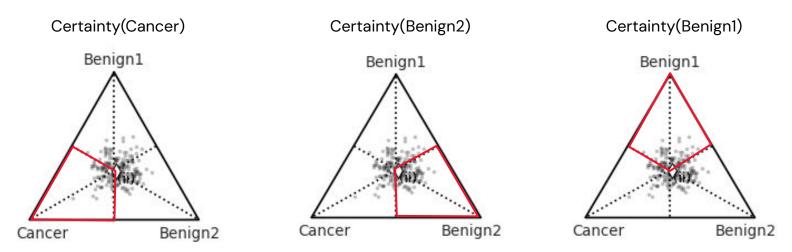


• How *certain* is it that y is the top-1 label?

$$ext{Certainty}(y;b,x) = \mathbb{E}_{p(\lambda|b,x)}\left[\delta[y = rg\max_j \lambda_j]
ight]$$

What is the highest certainty across labels?

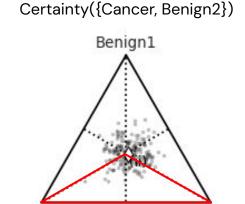
$$\operatorname{AnnotationCertainty}(b,x) = \max_{y} \operatorname{Certainty}(y;b,x)$$



Can also quantify certainty of label sets Y:

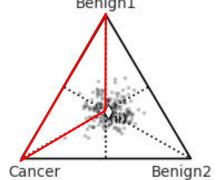
Benign2

$$ext{Certainty}(Y;b,x) = \mathbb{E}_{p(\lambda|b,x)}\left[\delta[Y= ext{top_k}(\lambda)]
ight]$$

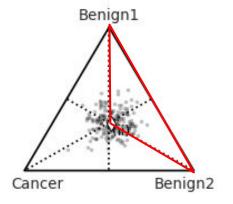


Cancer

Certainty({Cancer, Benign2})



Certainty({Benign1, Benign2})



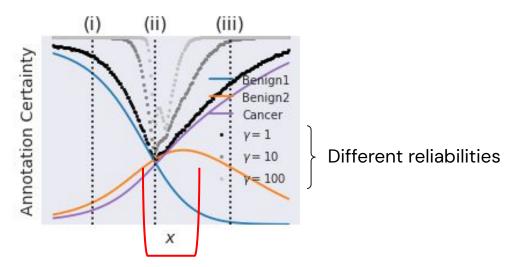
• How certain is it that y is the top-1 label?

$$ext{Certainty}(y;b,x) = \mathbb{E}_{p(\lambda|b,x)}\left[\delta[y = rg\max_j \lambda_j]
ight]$$

What is the highest certainty across labels?

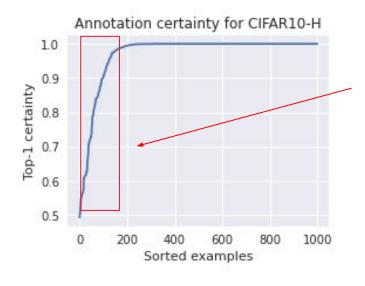
$$\operatorname{AnnotationCertainty}(b,x) = \max_{y} \operatorname{Certainty}(y;b,x)$$

ullet Annotation certainty on toy example for different reliabilities γ :



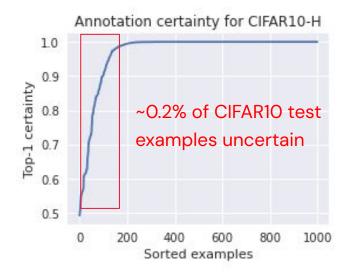
Top-1 label uncertain irrespective of how much we trust our annotators

• Annotation certainty on CIFAR10 using annotations from CIFAR10-H:



- 178 examples with annotation certainty < 99%
- This is ~0.2% of all CIFAR10 test examples

• Annotation certainty on CIFAR10 using annotations from CIFAR10-H:



Papers with Code leaderboard:

μ2Net	99.49	2022
ViT-L/16	99.42	2020
CaiT-M-36 U 224	99.4	2021
CvT-W24	99.39	2021
BiT-L	99.37	2019
ViT-B	99.3	2022

Improvements within 0.2%

Uncertainty-adjusted (top-k) accuracy

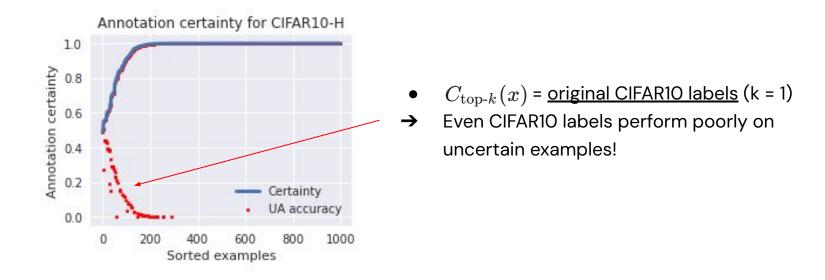
Given a model that yields a top-k prediction set $C_{\mathrm{top-}k}(x)$:

$$ext{UA-Accuracy}_{ ext{top-}k} = \mathbb{E}_{p(x)} \mathbb{E}_{p(\lambda|b,x)} \left[\delta[rg \max_j \lambda_j \in C_{ ext{top-}k}(x)]
ight]$$

Uncertainty-adjusted (top-k) accuracy

Given a model that yields a top-k prediction set $C_{{
m top-}\it{k}}(x)$:

$$ext{UA-Accuracy}_{ ext{top-}k} = \mathbb{E}_{p(x)} \mathbb{E}_{p(\lambda|b,x)} \left[\delta[rg \max_j \lambda_j \in C_{ ext{top-}k}(x)]
ight]$$



Case study: dermatology

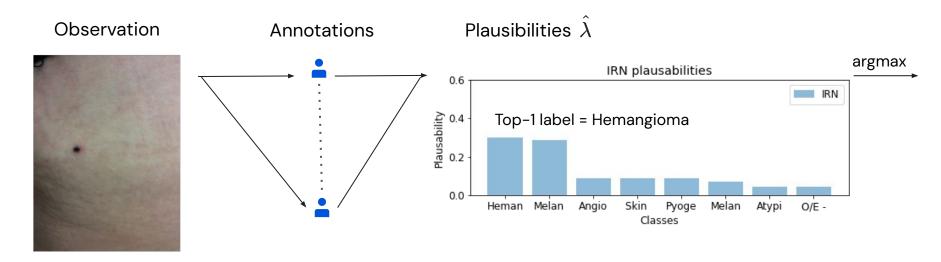
Observation b¹: {Pyogenic granuloma (Low)} {Hemangioma (Med)} {Melanoma (High)} b² {Angiokeratoma of skin (Low)} {Atypical Nevus (Med)} b³: {Hemangioma (Med)} {Melanocytic Nevus (Low), Melanoma (High), O/E - ecchymoses present (Low)} b⁴: {Hemangioma (Med), Melanoma (High), Skin Tag (Low)} b⁵: {Melanoma (High)} b⁶: {Hemangioma (Med)} {Melanoma (High)} {Melanocytic Nevus (Low)}

Partial rankings to model differential diagnoses

Case study: deterministic aggregation using IRN

Task: predict dermatological conditions from images.

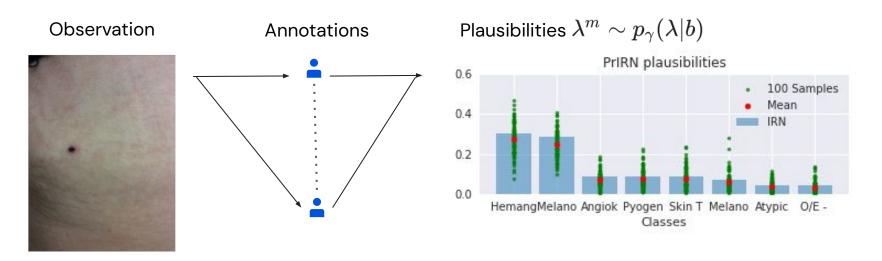
• Inverse rank normalization (IRN) to aggregate annotators' differential diagnoses.



Case study: statistical aggregation using PrIRN

Task: predict dermatological conditions from images.

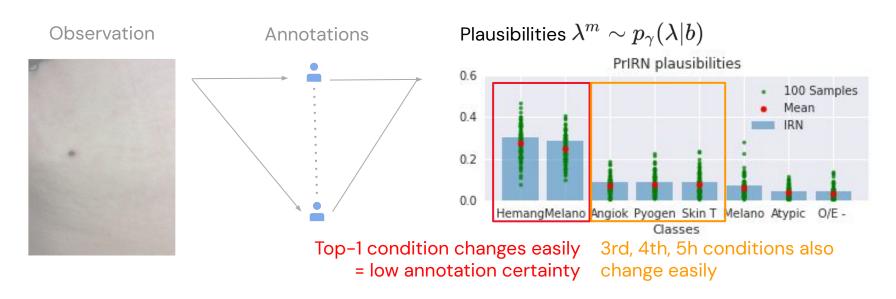
ullet Plackett-Luce or probabilistic IRN (PrIRN) to model $p(\lambda|b)$



Case study: statistical aggregation using PrIRN

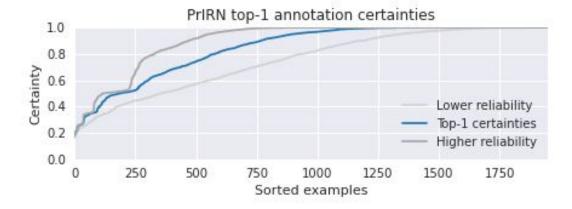
Task: predict dermatological conditions from images.

ullet Plackett-Luce or probabilistic IRN to model $p(\lambda|b)$



High annotation uncertainty

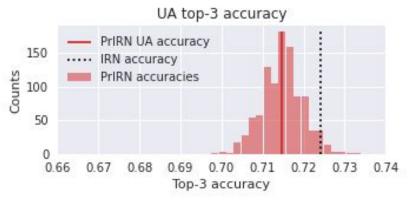
• Significant portions of cases with high annotation uncertainty:



→ In discussions with dermatologists often attributed to inherent uncertainty

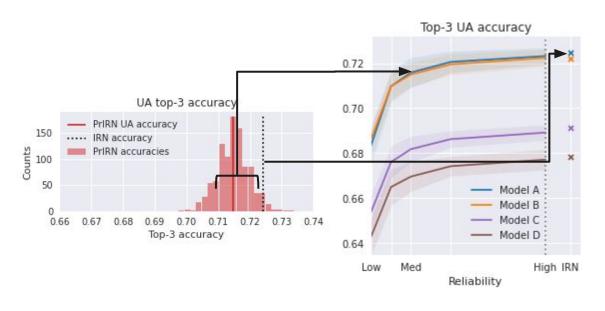
Uncertainty-adjusted top-3 accuracy

• Across cases / per plausibility:



→ Significant variation in top-3 accuracy

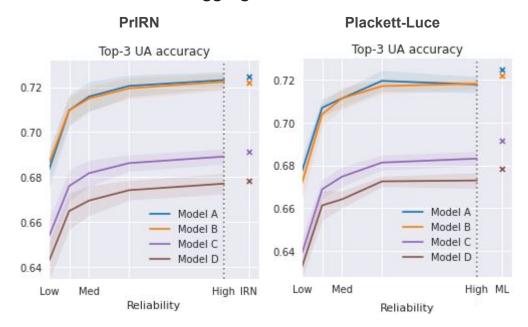
Evaluation across annotator reliabilities



- UA accuracy varies significantly by reliability
- IRN implicitly evaluates infinite annotator reliability
- Large spread/uncertainty in accuracies (shaded)

Alternative statistical aggregation methods

• Alternative statistical aggregation models exhibit different results:



→ Aggregation is a mode choice usually not made explicit!

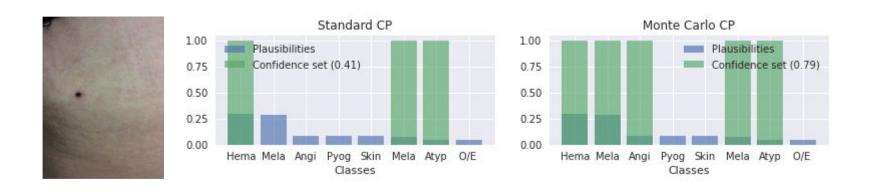
Bonus: calibration with uncertain ground truth

Calibration usually based on ground truth labels on a calibration/validation set:

- ullet Conformal prediction uses ground truth labels to calibrate a softmax threshold au
- Threshold used to predict confidence sets of classes at test time instead of the top-k:

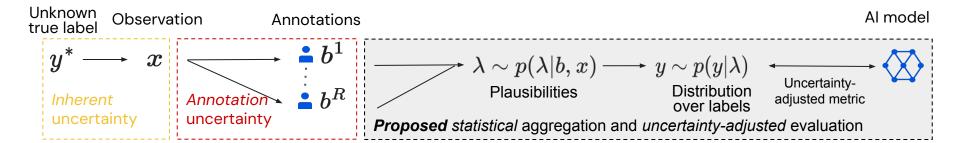
$$C_{ ext{top-}k}(x) \longrightarrow C_{ ext{CP}}(x) := \{k \in [K] : k - ext{th softmax} \geq au \}$$

• We propose *Monte Carlo* conformal prediction to calibrate directly against the annotations

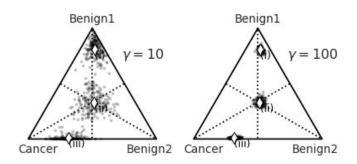


Conclusion

Proposed a statistical framework for dealing with ground truth uncertainty:



- → Ground truth uncertainty = inherent + annotation uncertainty (location + spread of plausibilities)
- → Annotation certainty explicitly measures annotation uncertainty
- → Uncertainty-adjusted metrics to evaluate and evaluate models



More: arxiv.org/abs/2307.02191 | arxiv.org/abs/2307.02302 | davidstutz.de | dstutz@google.com