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Ambiguity in Al

e True ground truth unknown / label errors inter-observer variability

e Rare classes or long-tailed class distribution w .
- enign

e High-stakes and security-critical applications
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Wang et al. Learning to Model the Tail, 2017; Karimi et al.

high + medium risk
O

MNIST  CIFAR-10 CIFAR-100 Caltech-256 ImageNet

given: 5 given: cat given: lobster given: ewer given whit stork
corrected: 3 corrected: frog corrected: crab corrected: teapot corrected: black stork

, Deep learning with noisy labels: exploring techniques and remedies in medical image

analysis, 2020; Bates et al., Distribution-Free, Risk-Controlling Prediction Sets, 2021; Northcutt et al., Pervasive Label Errors in Test Sets

Destabilize Machine Learning Benchmarks, 2021.
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Overview and Motivation: Conformal Prediction

Split conformal prediction as post-training wrapper with coverage
guarantee:

Conformal Prediction

~ {cat, dog, truck}
> Classifier — dog
) (set of classes)
- (single

cat class)

=> True class is in the predicted confidence
set with user-specified probability!
=> Number of predicted classes =

inefficiency @



Public

Overview and Motivation: Conformal Prediction

Training and conformalization objectives not aligned:

Calibrated to optimize

Conformal Prediction€- - - - - - - - - - - = = - - - - — = — - e
inefficiency/coverage

~ {cat, dog, truck}
Classifier — dog
v .
1-- (single
class)

(set of classes)

Trained with
cross-entropy loss
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Overview and Motivation: Conformal Training

Conformal training = take conformal predictor into account during training:

Conformal Prediction

~ {cat, dog, truck}
Classifier — dog

Gradient =

=> Optimize arbitrary objectives defined on
confidence sets

-> Obtain guaranteed coverage using any @
conformal predictor after training
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d Experimental Results
A Conclusion
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arxiv.org/abs/2110.09192
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https://arxiv.org/abs/2110.09192

Conformal Prediction

For model my,, = p(y|x), construct confidence sets
Co(x) C [K] ={1,..., K} such that:

Ply € Cylz)) >1—a

e confidence level o user-specified
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Conformal Prediction

For model 7y, = p(y|x), construct confidence sets
Co(x) C [K] =A1,..., K} such that:
Py € Cy(z)) > 1 —«

e confidence level @ user-specified
e inefficiency = average confidence set size |Cs(z)| minimized

{airplane} {dog, cat} {frog,horse,dog} {cat,frog} true class

coveragel/inefficiency yes/1 yes/2 no/3 yes/2
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Example: Threshold Conformal Predictor

Split conformal prediction with two steps: prediction and calibration:

1. Prediction: define how confidence sets Cy(x) are constructed,
Co(x) :={k € [K]: E(z,k) :=mgx(x) > 7}

with E(x, k) := mp ,(x) called conformity scores.
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Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with bounded error levels. Journal of the American Statisti@
Association (JASA), 114(525):223-234, 2019.
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Example: Threshold Conformal Predictor

Split conformal prediction with two steps: prediction and calibration:
1. Prediction: define how confidence sets Cy(x) are constructed.
Co(x) :={k € |[K]: E(x,k) :=mgi(x) > 1}

2. Calibration: define threshold 7 on held-out calibration set /.. .

04
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T

=0

T = «a -quantile of { E(z:, ¥i) bier.,

) 10 60

A
Sorted Examples i
Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with bounded error levels. Journal of the American Statisti@

Association (JASA), 114(525):223-234, 2019.
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Example Results

Inefficiency | for different methods:

Dataset, o Thr APS RAPS
CIFAR10, 0.05 1.64 2.06 1.74
CIFAR10, 0.01 2.93 3.30 3.06

82% accuracy on CIFAR10

Yaniv Romano, Matteo Sesia, and Emmanuel J. Candes. Classification with valid and adaptive coverage. In Advances in Neural Information

Processing Systems (NIPS), 2020.

Anastasios Nikolas Angelopoulos, Stephen Bates, Michael |. Jordan, Jitendra Malik:

Uncertainty Sets for Image Classifiers using Conformal Prediction. ICLR 2021
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Example Results

Inefficiency | for different methods:

Dataset, Thr APS
CIFAR10, 0.05 1.64 2.06
CIFAR10, 0.01 2.93 3.30
CIFAR100,0.01 ' 10.63 16.62

82% accuracy on CIFAR10

RAPS
1.74
3.06
14.42
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Training of Classifier with Conformal Wrapper

Conformal prediction is typically applied after training:

Conformal Wrapper

E

Classifier

— W@(QZ)
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Training of Classifier with Conformal Wrapper

Conformal prediction is typically applied after training:

Calibrated to optimize

Conformal Wrapper <= - = = = = = — - - o o oL o - — —allibre
inefficiency/coverage

_y Classifier — g (33> : C@ (:E)

-
-

-

Trained with
cross-entropy loss

O
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Training of Classifier with Conformal Wrapper

Conformal prediction is typically applied after training:

Conformal Wrapper

> CQ(ZE)

Classifier — 7o (37>

—————————————————————— --- L(Cy(x),y)

-> Preserve coverage guarantee
=> Independent of conformal predictor used at test time

o



DeepMind

Conformal Training
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Conformal Training

Public

Bcal

| Classifier

7'('9(%)

(1)

mo(2)

— Calibration step

l

Prediction step and loss computation

\

B pred
_/

“Simulate” conformal prediction on each mini-batch @



Conformal Training

Bcal

Differentiable implementations needed

| Classifier

7'('9(%)

(1)

mo(2)

B pred
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Differentiable Conformal Prediction

Make both prediction and calibration steps differentiable:

1. Thresholding implemented using sigmoid function o and temperatureT’

Cor(z) :=c((E(x,k) —T1)/T) € [0, 1]
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Differentiable Conformal Prediction

Make both prediction and calibration steps differentiable:

1. Thresholding implemented using sigmoid function o and temperatureT’
Cox(z) := o((mor(z) —7)/T) € [0, 1]

differentiable conformity score /

o
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Differentiable Conformal Prediction

Make both prediction and calibration steps differentiable:

1. Thresholding implemented using sigmoid function 0 and temperatureT’

Cor(x) :=o((mer(x) —71)/T) € [0,1]

\

interpreted as “soft” assignments

o
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Differentiable Conformal Prediction

Make both prediction and calibration steps differentiable:

1. Thresholding implemented using sigmoid function 0 and temperatureT’
Cox(z) := o((mox(z) —7)/T) < [0, 1]

2. Calibration using a smooth-sorter to compute the & -quantile.

o
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Differentiable Conformal Prediction

Make both prediction and calibration steps differentiable:

1. Thresholding implemented using sigmoid function 0 and temperatureT’
Cox(z) := o((mox(z) —7)/T) < [0, 1]

2. Calibration using a smooth-sorter to compute the & -quantile.

def smooth_predict_threshold(

probabilities: jnp.ndarray, tau: float, temperature: float) -> jnp.ndarray:
"""Smooth implementation of prediction step for Thr."""
return jax.nn.sigmoid((probabilities - tau) / temperature)

def smooth_calibrate_threshold/(
probabilities: jnp.ndarray, labels: jnp.ndarray,
alpha: float, dispersion: float) -> float:
"""Smooth implementation of the calibration step for Thr."""
conformity_scores = probabilities|[jnp.arange (probabilities.shape[0]), labels.astype(int)] @
return smooth_quantile (array, dispersion, (1 + 1./array.shape[0]) * alpha)
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Differentiable Conformal Prediction

Make both prediction and calibration steps differentiable:

1. Thresholding implemented using sigmoid function 0 and temperatureT’
Cox(z) := o((mox(z) —7)/T) < [0, 1]

2. Calibration using a smooth-sorter to compute the & -quantile.

=> Other differentiable conformity scores possible — e.g., APS.

o



Conformal Training

Bcal

| Classifier

Wg(x)

(1)

mo(2)

. 7 — smooth- «-quantile of {7y, (Z:) bicB..,

| differentiable w.r.t. 9

Public

______________ e

>

B pred

Prediction step and loss computation
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Conformal Training

Public

Bcal
I1 o (1) )
To 7o(22) -~ 7 — Smooth- av-quantile of {7(-9,%- (ilfz')}z'eBcal
| differentiable w.r.t. §
> CIaSSifier .........................................................................
mo() l
- Coi(xi;7) :=o((mor(zi) —7)/T) for i € Bpred
¢ differentiable w.r.t. # through my(x;) and T
A e e e ea e e B sred * loss on C €T;
VL pred L 9( )
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Conformal Training

Public

Bcal
I1 o (1) )
To o(22) -~ 7 — Smooth- av-quantile of {We,yi(xi)}ieBcal
| Classifier | | . | Y—+ | empirical coverage (1 —ajon Bpea
mo()

- Coi(xi;7) :=o((mor(zi) —7)/T) for i € Bpred

<Bre .......... IOSS on C €X;

VL pred L 0( )

=> Re-calibrate at test time to obtain coverage guarantee! @
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Objectives

@ Reducing inefficiency: @ Influencing the composition of
confidence sets:
e Avoiding coverage confusion
e Reducing mis-coverage

e Reduce overall
uncertainty

e Reduce class-conditional
uncertainty

O
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Why Reduce Inefficiency?

Remember:

e Coverage is guaranteed
e Inefficiency reflects uncertainty

NN N

{frog,dog, ,horse} {frog,dog, {frog,

>
reduced inefficiency = lower uncertainty translates to better resource/time usage to users @



Optimizing Inefficiency
Train to directly reduce inefficiency:

QCy()) = Y Coxl)

o Cyi(x) €|0,1] interpreted as “soft assignments”
e can be seen as smooth approximation of E[|Cy(x)]]
e no loss on true label iy as empirical coverage close to (1 — «)
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Reducing Inefficiency: Results

Inefficiency | for av= 0.01:

CP at test time: Thr

Dataset Cross-entropy | ConfTr
baseline (ours)

MNIST 2.23 2.11 (-5.4%)

F-MNIST 2.05 1.67 (-18.5%)

EMNIST (K=52) | 2.66 2.49 (-6.4%)

CIFAR10 2.93 2.84 (-3.1%)

CIFAR100 10.63 10.44 (-1.8%)
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Reducing Inefficiency: Results

Inefficiency | for av= 0.01:

CP at test time: Thr APS

Dataset Cross-entropy | ConfTr Cross-entropy | ConfTr
baseline (ours) baseline (ours)

MNIST 2.23 211 (-5.4%) |2.50 214 (-14.14%)

F-MNIST 2.05 1.67 (-18.5%) | 2.36 1.72 (-27.1%)

EMNIST (K=52) | 2.66 2.49 (-6.4%) |4.23 2.87 (-32.2%)

CIFAR10 2.93 2.84 (-3.1%) | 3.30 2.93 (-11.1%)

CIFAR100 10.63 10.44 (-1.8%) | 16.62 12.73 (-23.4%)
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Inefficiency Distribution

Inefficiency I distributed very differently across classes:

CIFAR1O0: Inefficiency by Class for Baseline+Thr

E— average: 2.93
, 1N
0 * 2 * 4 6 8

Class
car cat

iSS

Inefficiency
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Reducing Class-Conditional Inefficiency

e Reduce inefficiency for “easy” / low-risk classes

2000
1500
" :
8 reduce uncertainty here
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Dermatologic condition (sorted by prevalence in dataset)

Roy et al. Does your dermatology classifier know what it doesn't know? Detecting the long-tail of unseen conditions. Medical Image

Anal., 2022.
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Results: CIFAR10

e Possible inefficiency improvement per class (in %)
e Cost in terms of average inefficiency increase across classes (in %)

CIFAR1O0: Ineff Improvement by Class

0 I l
N I
-20

0 2 B 6 8

Class

Relative Change (%)
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Results: CIFAR10

e Possible inefficiency improvement per class (in %)
e Cost in terms of average inefficiency increase across classes (in %)

- [N N NN S . —_— -
0 | ™= ineff Improvement Group O i 1

[ Avg. Ineff Increase Gmup 0O mmm1

CIFAR10: Ineff Improvement by Class CIFAR10: Ineff Reduction by Group
5
0 I I
-~ I ma | L1
0 2 0 2 4 6

Class Class

Relative Change (%)
Relative Change (%)
I
(6]
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More on Class-Conditional Inefficiency

e Possible inefficiency improvement per class (in %)
e Cost in terms of average inefficiency increase across classes (in %)

CIFAR100: Ineff Improvement by Group

|
-2 I IIII
—30
00 25 50 75 5 150 17.5

10.0 12.
Class

o

o

o

Relative Change (%)
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Objectives

@ Reducing inefficiency:

e Reduce overall
uncertainty

e Reduce class-conditional
uncertainty

@ Influencing the composition of

confidence sets:

Avoiding coverage confusion
Reducing mis-coverage

Public
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Beyond Reducing Inefficiency

e Shape composition of confidence sets:
o Avoid confusion of specific, easily confused classes
o Avoid mixing classes of different categories

| Is there a bone fracture in this image?

RS A L

Yes No Yes No Maybe

high + medium risk

Platanios et al. Learning from Imperfect Annotations. ArXiv, 2020.

Public

normal, - -+, stroke,--- cancer, - -
P=08, =01 7 p=0.05, L=100" 7 P=0.0005, L=20"
—R=0.08 —R=5.0 —R=0.01
| R
high risk
&

o



Public

Shaping Confidence Sets

Which classes are actually included in Cy(z) ?

K
Q(Co(z)) + Y Ly [(1 — Cox(x))dly = k] + Cox(z)d[y # k]
— 3

Ineff loss True class included Other classes not included

e “just” enforces coverage with L = Ik
e use L,; > 0 to penalize class k occurring in confidence sets of class y

o



Example: Reduce Coverage Confusion

Reduce confusion between 4 (coat) and 6 (shirt) in confidence sets:

I:=L-MNIST: Reducing Cov Confusion 4-6

4-6 6-4 —— 2-4 4-2

Cov Confusion Change (%)

0.0 0.2 0.4 0.6 0.8 1.0
Off-Diagonal Weight
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Example: Reduce Coverage Confusion

Reduce confusion between 2 (pullover), 4 and 6 in confidence sets:

Cov Confusion Change (%)

I;-MNIST: Reducing Cov Confusion 4-6

0.2

6-4 2-4

0.4 0.6
Off-Diagonal Weight

42

0.8

1.0

F-lMNIST: Reducing Cov Confusion 2-4-6

Cov Confusion Change (%)

—2-4 — 26 4-6 —— 0-3
, 4-2 6-2 6-4 —— 3-0
0.0 0.2 0.4 0.6 0.8 1.0

Off-Diagonal Weight
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Example: Reduce Mis-Coverage

Public

Avoid natural and human-made classes in the same confidence sets:

CIFAR100

ConfTr

Lhuman—made,natural >0

Lnatural,human-made > 0

Inefficiency

10.44
16.50
11.35

% natural classes in
human-made confidence sets

40.09
15.77
45.37

% human-made classes in
natural confidence sets

29.60
70.26
17.56
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Conclusion: Conformal Training

= end-to-end training of classifier and conformal wrapper.

e retains coverage guarantee
e reduces inefficiency
e allows arbitrary, application-specific losses

Paper: arxiv.org/abs/2110.09192

CIFAR10: Ineff Improvement by Class

|

0 I

|

|

-10 :
|

-20 I
|

|
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|

l;-MNIST: Reducing Cov Confusion 4-6

— 46 —— 64 ——2-4 —— 4-2

Relative Change (%)

-2

0.0 0.2 0.4 0.6 0.8 1.0
Off-Diagonal Weight “

Cov Confusion Change (%)

Class


https://arxiv.org/abs/2110.09192
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Example: Threshold Conformal Predictor

Split conformal prediction with two steps: prediction and calibration:
1. Prediction: define how confidence sets Cy(x) are constructed.
Co(x) :={k € |[K]: E(x,k) :=mgi(x) > 1}

2. Calibration: define threshold 7 on held-out calibration set /.. .

0.5

04

=03

=0

S§]

T=a-(1+1/|Lal) ~quantile of { £ (i, ¥i) }ier..,
- T

40 60 ) 1

o) &
Sorted Examples i
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Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with bounded error levels. Journal of the American Statisti@

Association (JASA), 114(525):223-234, 2019.
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Conformal Training

Bcal

| Classifier

7'('9(%)

(1)

mo(2)

. 7 — smooth- a-quantile of {logme,y, (i) }icn.,

______________ T —

— Cy.r(xi;7) := o((log mor(z;) — 7)/T)for i € Bpred

B pred
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Smooth Conformal Prediction

Prediction step: Calibration step:
1: function PREDICT(7e(z), T) 1: function CALIBRATE({ (7o (x:), Yi }ie1, 0)
2: compute Fy(z, k), k€[K] 2: compute Fy(xz;,vy:),i=1,...,n
3: return Cy(x;7) ={k: Ego(x,k) > 7} 3: return QUANTILE({ Egp(zi,vi)}, a(1l + 1/n))

Smooth implementation:

: function SMOOTHPRED(7y (), 7, T=1)
return Cy i (z;7) = a(w), k€ [K]

1

2

3: function SMOOTHCAL({ (7o (i), yi }ie1, )

4:  return SMOOTHQUANT({Eg (x4, yi)}, a(1+2))

O



Conformal Training: Algorithm

-
2
3
4:
5
6.
7
8
9

10:

11:
12:

function CONFORMALTRAINING(c«, A=1)

for mini-batch B do
randomly split batch By W Bpred = B
{*“On-the-fly” calibration on B, :}
7 =SMOOTHCAL({(mg(x:),yi) }ien
{Prediction only on ¢ € Byred:}
Co(x;;7) = SMOOTHPRED(7p (;), T)
{Optional classification loss: }
Lp=0or Zz‘eBpred L(Co(zi;T),y:)

QB = E’iEBpred Q(Cg (331, ’T))
A= v@ 1/|Bpred|(£B + )\QB)
update parameters € using A

@)

cal ?
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Coverage Confusion

Formal definition:

1
Yk = —— Z dlyi =yANk e C(x;)]

 Thest
test €10

I;-MNIST: Reducing Cov Confusion 4-6 ¥ F-iMNIST: Reducing Cov Confusion 2-4-6

—_—2-4 — 26 4-6 —— 0-3
4-2 6-2 6-4 —— 3-0

4-6 6-4 2-4 4-2

Cov Confusion Change (%)
N

Cov Confusion Change (%
I
(=)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Off-Diagonal Weight Off-Diagonal Weight
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Coverage Confusion: Example

N

True Clas

o
(==
w

o 1 2 3 4 5

Predicted Class




Mis-Coverage

Based on two disjoint subsets of classes KN K; =0 :

MisCoverg_1 =

1

Z 5[yz € Ko /\(E”{i ceK;:ke C(.’I)z))]

ZiEItest 5[3/1 < KO] ie]test

CIFAR10: Ko= 3 (“cat”) vs. K;= Others
CIFAR100: Kop= “human-made vs. K;= “natural”

CIFAR10 CIFAR100
MisCover | MisCover |
Method Ineff| 0—1 | 1—0 || Ineff | 0—1 | 1—0
ConfTr 2.84 198.92|36.52(/10.4440.09| 29.6
Lk, k,=1(2.8991.60|34.74 || 16.50 | 15.77 | 70.26
Li, k,=1[{2.92|97.36|26.43||11.35|45.37|17.56
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Binary Datasets

WineQuality: Reducing Ineff of Class 0

3 2.0
L =
o :
O .
= : ——Size 0 ——Sizel
£15 .
0 2 4 6 8 10

Size Weight Class 0

Public

WineQuality: Importance Class 0

SA

RS

“g @10 — -0 —1'0/
o) gﬁ — (-] —_]

Vo (am——m

o o

o

O 1.0 1.5 2.0 2.5 3.0 35 4.0

On-Diagonal Weight

O



