Evaluation and calibration of AI models with *uncertain* ground truth

David Stutz

Jul 11 2023

Outline

- Motivation through annotator disagreement
- Statistical model
- Measuring uncertainty
- Evaluating AI models
- □ Case study in dermatology:
 - Results
 - Bonus: calibration
- Conclusion and outlook

Paper: arxiv.org/abs/2307.02191

Google DeepMind

2023-7-6

Evaluating AI systems under uncertain ground truth: a case study in dermatology

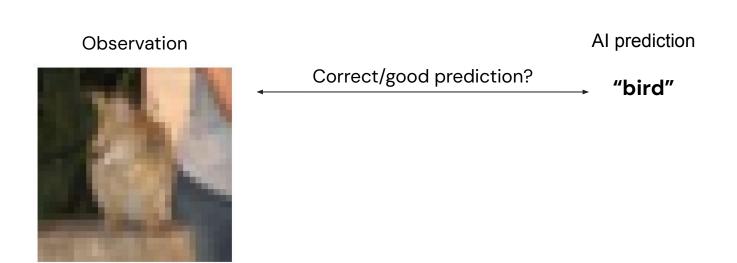
David Stutz^{*,@,1}, Ali Taylan Cemgil^{*,@,1}, Abhijit Guha Roy^{*,@,2}, Tatiana Matejovicova^{*,1}, Melih Barsbey^{*,1,3}, Patricia Strachan², Mike Schaekermann², Jan Freyberg², Rajeev Rikhye², Beverly Freeman², Javier Perez Matos², Umesh Telang², Dale R. Webster², Yuan Liu², Greg S. Corrado², Yossi Matias², Pushmeet Kohli¹, Yun Liu^{2,+}, Arnaud Doucet^{1,+} and Alan Karthikesalingam^{2,+}

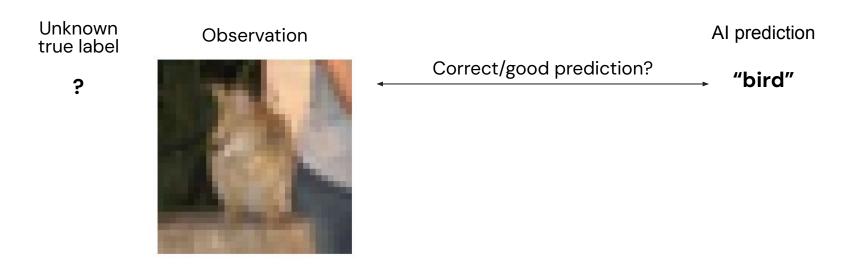
 $^1 \text{Google DeepMind}, ^2 \text{Google}, ^3 \text{Bogazici University}, ~^* \text{Equal first authors}, ~^{@} \text{Corresponding authors}, ~^+ \text{Equal last authors}$

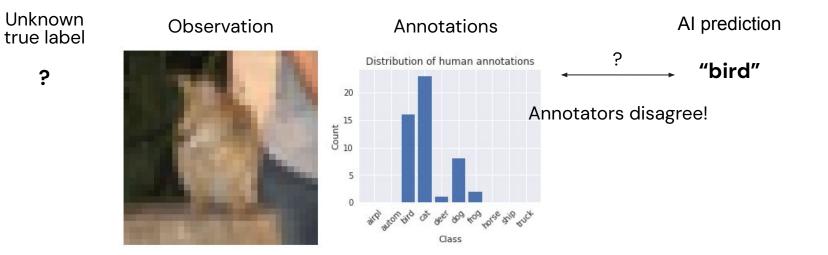
"Bird", "cat", or "frog"?

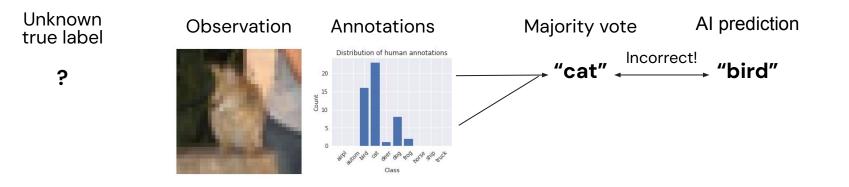
"Hemangioma" or "Melanoma"? Benign or cancer?

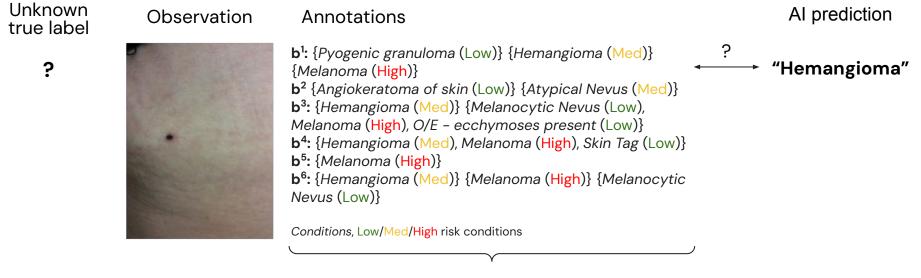
Confidential – Google DeepMind



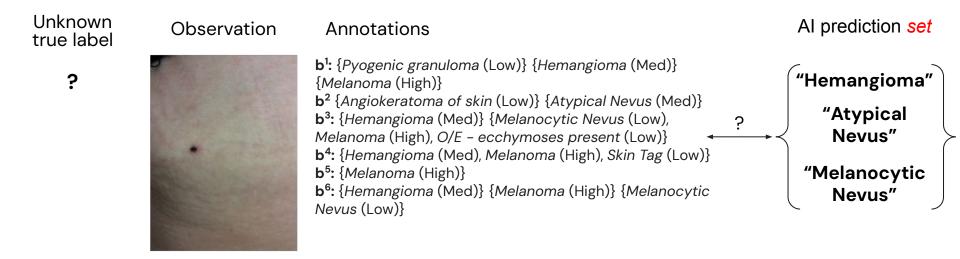


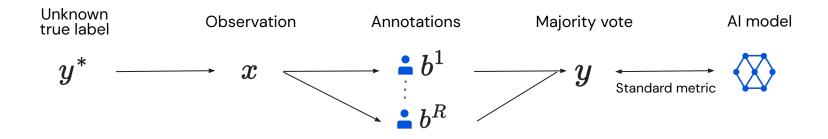


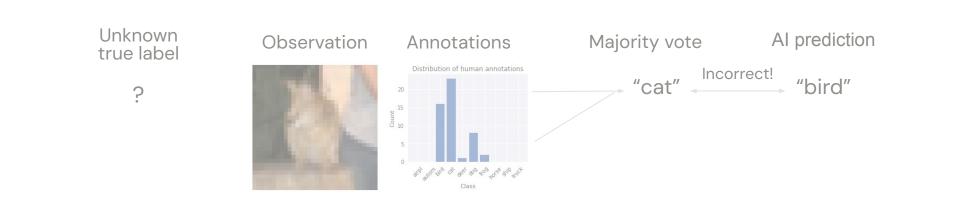




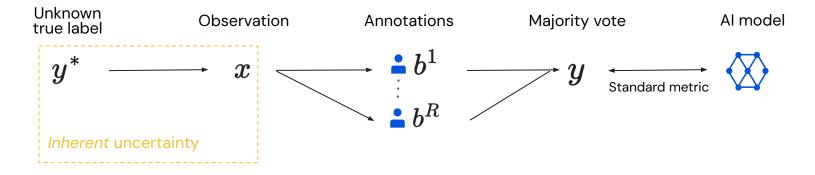
Majority vote non-trivial







Inherent uncertainty



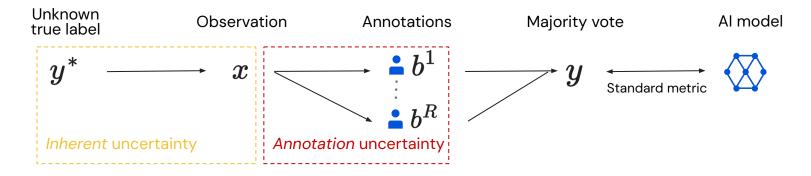
Inherent uncertainty = limited observational information: (typically called data uncertainty)

- Low-resolution images in image recognition (e.g., CIFAR10)
- Single 2D view in 3D reconstruction
- Missing meta information or no option to question the patient in health

• ...

TL;DR: $p(y^*|x)$ is not one-hot and has high entropy!

Annotation uncertainty

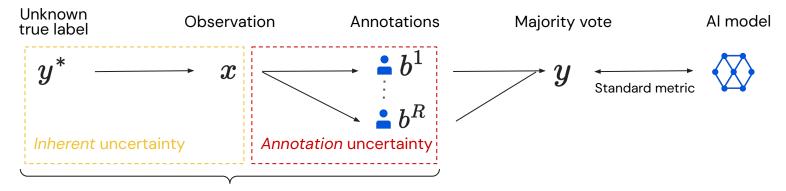


Annotation uncertainty = uncertainty induced through human annotators:

- Subjective tasks
- Inexperience of annotators
- Insufficient training of annotators
- Inappropriate annotation tool
- Different biases or background from annotators

TL;DR: annotation is difficult.

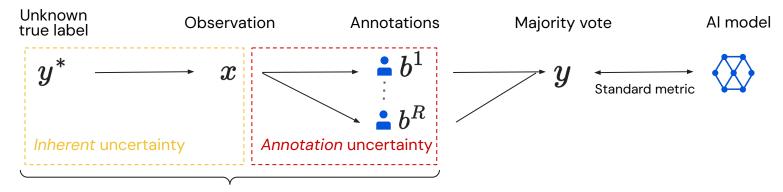
Ground truth uncertainty



Ground truth uncertainty = inherent + annotation uncertainty

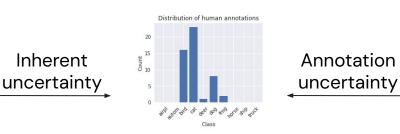
• We observe both through annotation **disagreement**

Ground truth uncertainty

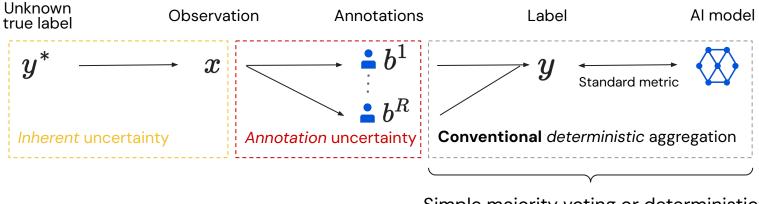


Ground truth uncertainty = inherent + annotation uncertainty

- We observe both through annotation disagreement
- Usually we cannot disentangle between inherent and annotation uncertainty

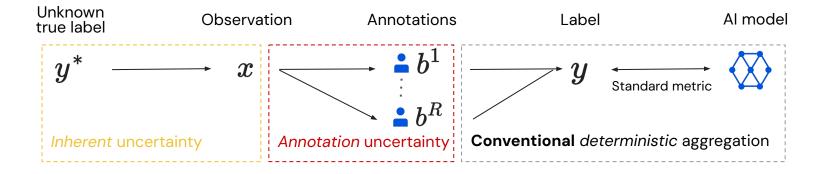


Deterministic aggregation ignores uncertainty



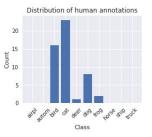
Simple majority voting or deterministic aggregation ignores this uncertainty

Deterministic aggregation ignores uncertainty

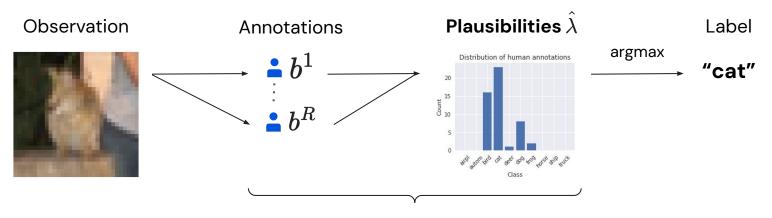


Deterministic aggregation:

- → Might evaluate against the wrong labels
- → Ignores large parts of the annotators
- → Does not quantify uncertainty on top of metrics



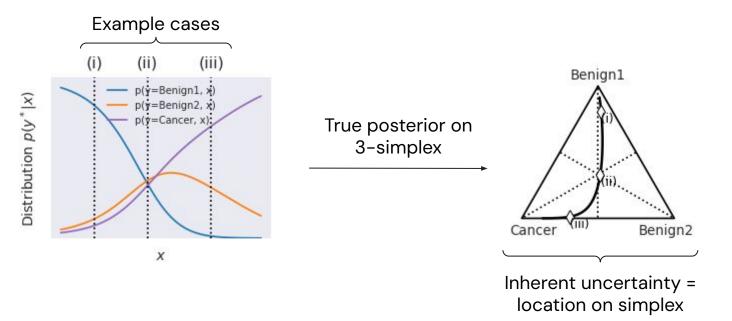
Introducing *plausibilities*



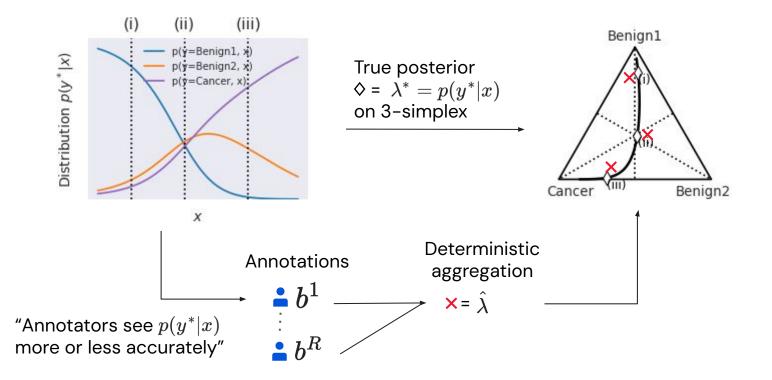
Deterministic aggregation approximates posterior $p(y^*|x)$ using a point estimate $\hat{\lambda}$

- "Plausibilities" = how *plausible* is a label given the annotations
- In this talk: categorical distributions over classes

Plausibilities on one-dimensional toy example

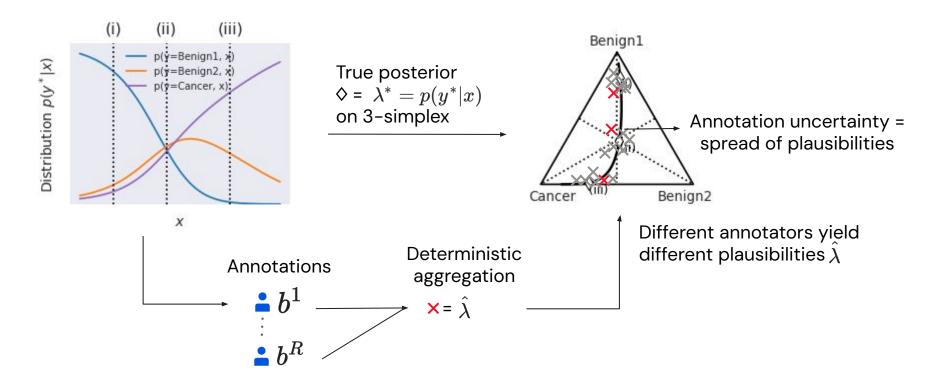


Point estimates from deterministic aggregation



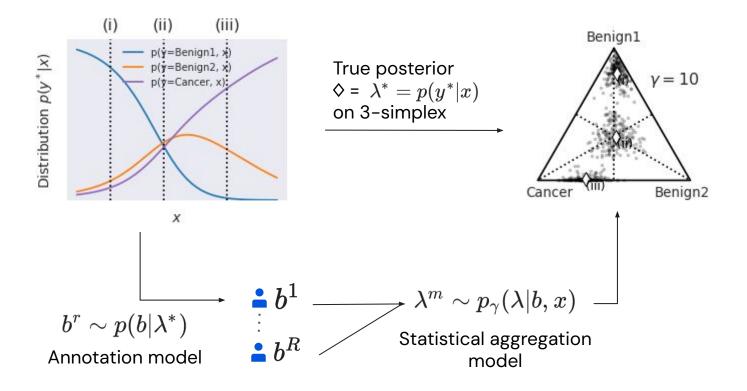
Confidential – Google DeepMind

Variation in plausibilities through re-annotating

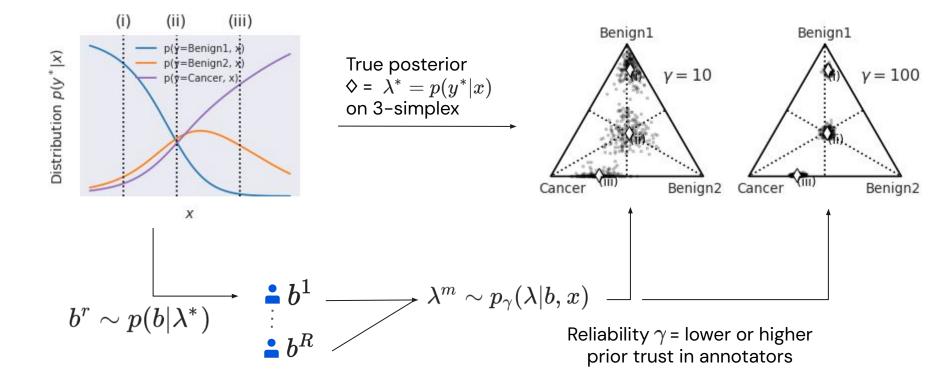


Confidential - Google DeepMind

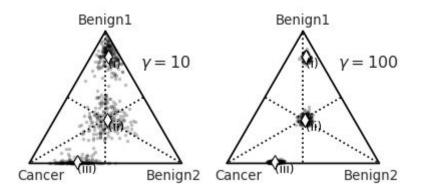
Statistical aggregation



Annotator reliability in statistical aggregation



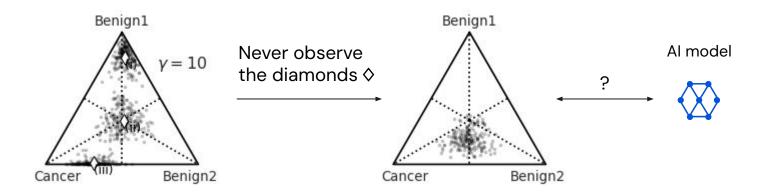
Conclusion: plausibilities on toy example



Ground truth uncertainty on the simplex:

- Location of plausibilities on simplex = inherent uncertainty
- Spread of plausibilities = annotation uncertainty

Conclusion: plausibilities on toy example

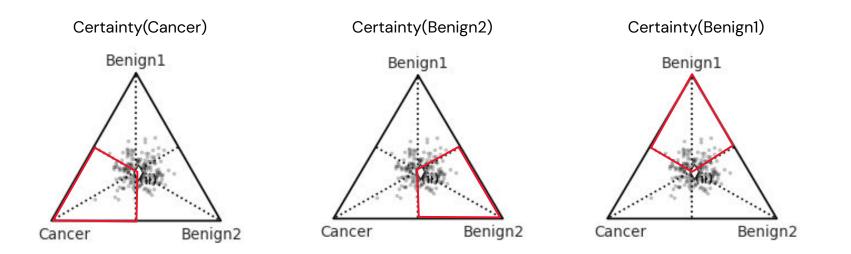


In practice, we only observe annotation disagreement:

- Cannot disentangle annotation and inherent uncertainty
- Often impossible to deterministically derive a good approximation λ
- → How to *measure* this uncertainty and to *evaluate* AI models?

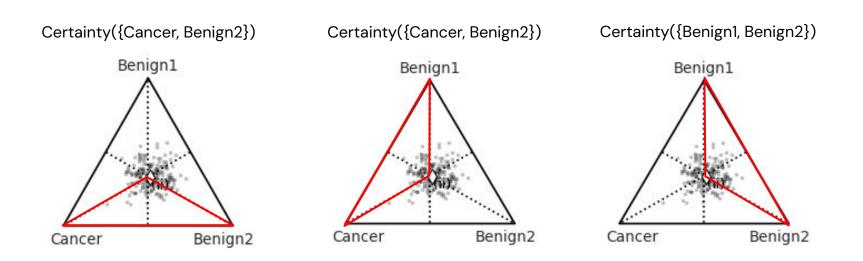
• How *certain* is it that y is the top-1 label?

$$ext{Certainty}(y;b,x) = \mathbb{E}_{p(\lambda|b,x)} \left[\delta[y = rg\max_j \lambda_j]
ight]$$



• Can also quantify certainty of label sets Y:

$$\mathrm{Certainty}(Y;b,x) = \mathbb{E}_{p(\lambda|b,x)} \left[\delta[Y = \mathrm{top}_{\mathtt{k}}(\lambda)]
ight]$$



How certain is it that y is the top-1 label?

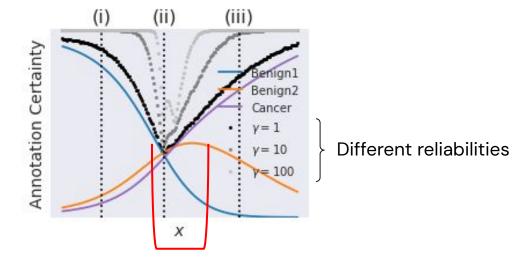
$$ext{Certainty}(y;b,x) = \mathbb{E}_{p(\lambda|b,x)} \left[\delta[y = rg\max_j \lambda_j]
ight]$$

_

What is the highest certainty across labels?

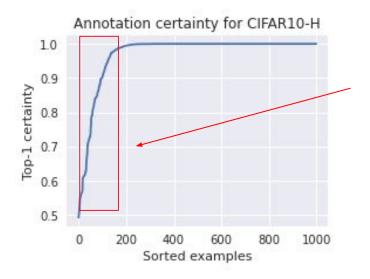
$$ext{AnnotationCertainty}(b,x) = \max_y ext{Certainty}(y;b,x)$$

• Annotation certainty on toy example for different reliabilities γ :



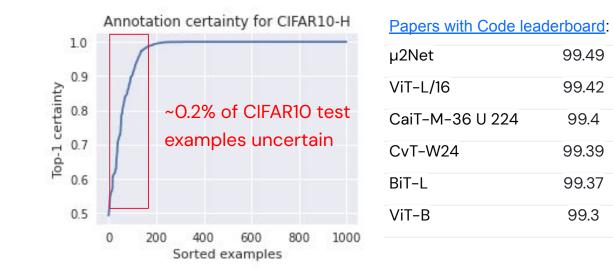
Top-1 label unclear uncertain irrespective of how much we trust our annotators

• Annotation certainty on CIFAR10 using annotations from CIFAR10-H:



- 178 examples with annotation certainty < 0.99
- This is ~0.2% of all CIFAR10 test examples

• Annotation certainty on CIFAR10 using annotations from CIFAR10-H:



Improvements within 0.2%

2022

2020

2021

2021

2019

2022

Uncertainty-adjusted (top-k) accuracy

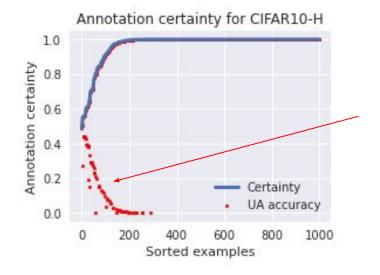
Given a model that yields a top-k prediction set $C_{ ext{top-}k}(x)$:

$$ext{UA-Accuracy_{ ext{top-}k}} = \mathbb{E}_{p(x)} \mathbb{E}_{p(\lambda|b,x)} \left[\delta[rg\max_j \lambda_j \in C_{ ext{top-}k}(x)]
ight]$$

Uncertainty-adjusted (top-k) accuracy

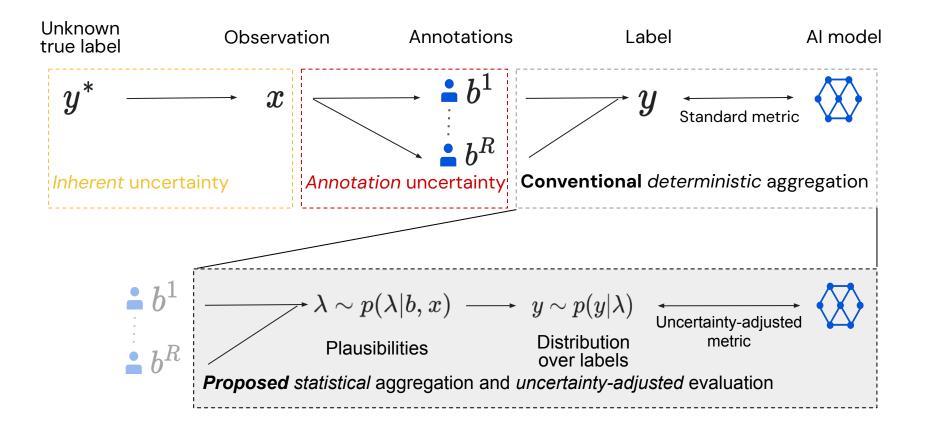
Given a model that yields a top-k prediction set $C_{ ext{top-}k}(x)$:

$$ext{UA-Accuracy_{ ext{top-}k}} = \mathbb{E}_{p(x)} \mathbb{E}_{p(\lambda|b,x)} \left[\delta[rg\max_j \lambda_j \in C_{ ext{top-}k}(x)]
ight]$$



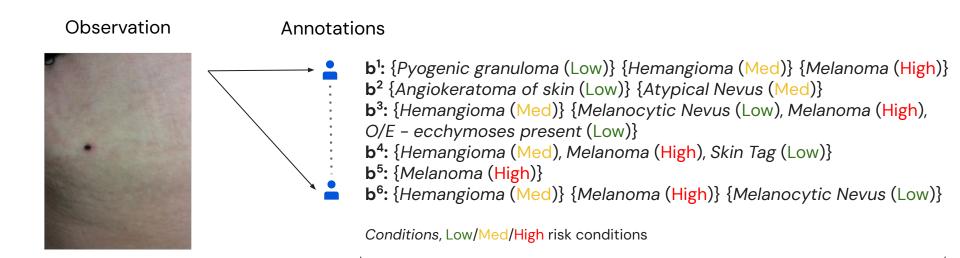
- $C_{\operatorname{top-}k}(x)$ = original CIFAR10 labels (k = 1)
- Annotations taken from CIFAR10-H
- → Even CIFAR10 labels perform poorly on uncertain examples!

Summary: proposed statistical framework



Case study: dermatology

Task: predict dermatological conditions from (multiple, consumer-grade) images.

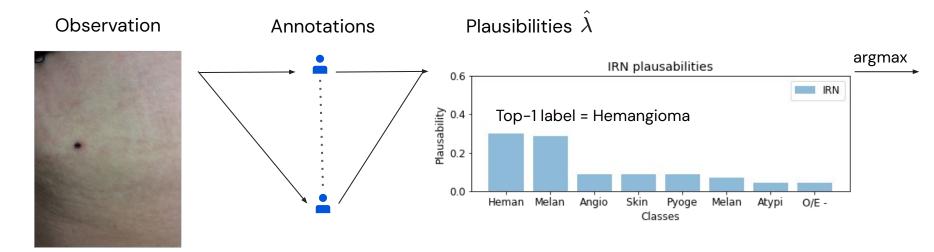


Partial rankings to model differential diagnoses

Case study: deterministic aggregation using IRN

Task: predict dermatological conditions from images.

• Inverse rank normalization (IRN) to aggregate annotators' differential diagnoses.

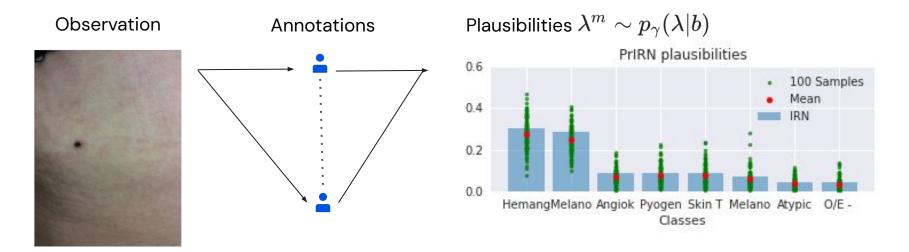


Confidential - Google DeepMind

Case study: statistical aggregation using PrIRN

Task: predict dermatological conditions from images.

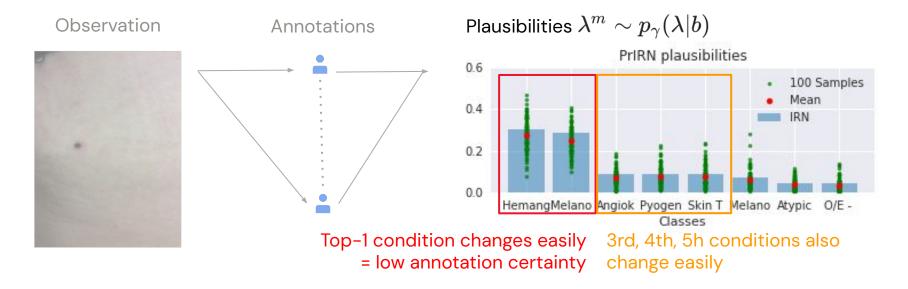
• Plackett-Luce or probabilistic IRN (PrIRN) to model $p(\lambda|b)$



Case study: statistical aggregation using PrIRN

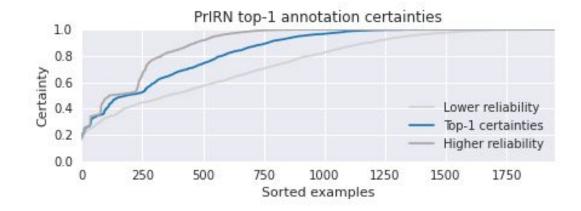
Task: predict dermatological conditions from images.

• Plackett-Luce or probabilistic IRN to model $p(\lambda|b)$



High annotation uncertainty

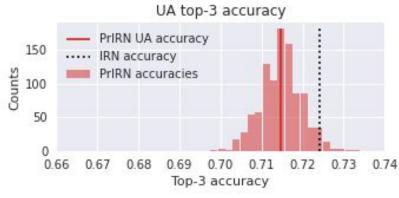
• Significant portions of cases with high annotation uncertainty:



→ In discussions with dermatologists often attributed to inherent uncertainty

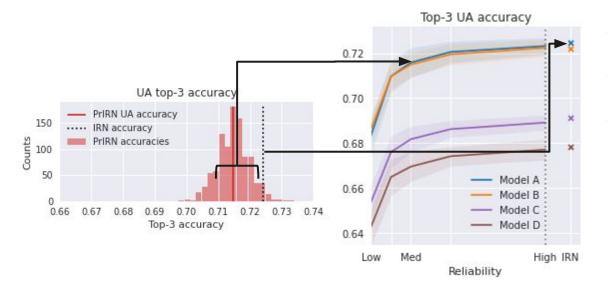
Uncertainty-adjusted top-3 accuracy

• Across cases / per plausibility:



→ Significant variation in top-3 accuracy

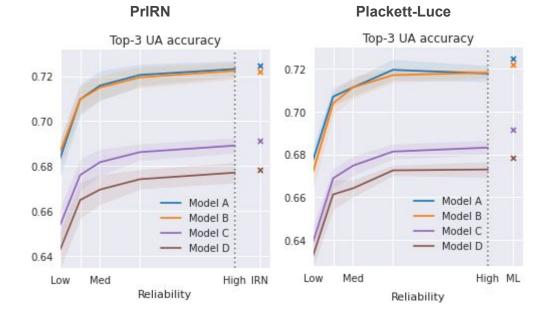
Evaluation across annotator reliabilities



- UA accuracy varies significantly by reliability
- IRN implicitly evaluates infinite annotator reliability
- Large spread/uncertainty in accuracies (shaded)

Alternative statistical aggregation methods

• Alternative statistical aggregation models exhibit different results:



→ Aggregation is a mode choice usually not made explicit!

Bonus: calibration with uncertain ground truth

Calibration usually based on ground truth labels on a calibration/validation set:

- Conformal prediction uses ground truth labels to calibrate a softmax thresholdau
- Threshold used to predict confidence sets of classes at test time instead of the top-k:

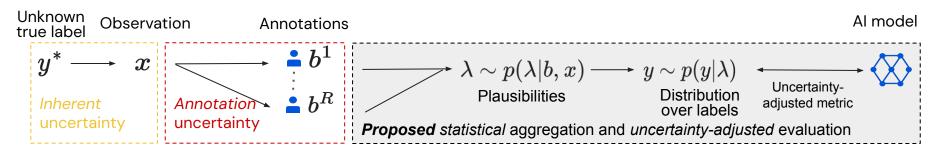
$$C_{\operatorname{top-}k}(x) \longrightarrow C_{\operatorname{CP}}(x) := \{k \in [K]: k-\operatorname{th}\operatorname{softmax} \geq au\}$$

• We propose *Monte Carlo* conformal prediction to address this issue, improving uncertainty-adjusted performance

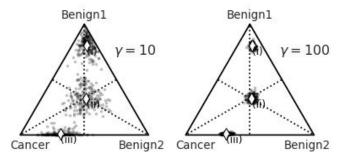


Conclusion

Proposed a statistical framework for dealing with ground truth uncertainty:



- → Ground truth uncertainty = inherent + annotation uncertainty (location + spread of plausibilities)
- → Annotation certainty explicitly measures annotation uncertainty
- → Uncertainty-adjusted metrics to evaluate and evaluate models



More details: <u>arxiv.org/abs/2307.02191</u> | dstutz@google.com