

Disentangling Adversarial Robustness and Generalization

David Stutz, Matthias Hein and Bernt Schiele

Problem

Relationship between adversarial robustness and generalization: are accurate and robust models possible?

Contributions

1 Adversarial Examples Leave Manifold

3 On-manifold robustness *is* generalization.

4 Robustness and generalization *not* contradicting.

Robustness has higher sample complexity.

Nearest Neighbors

 L_2 Distance to Approximated Manifold

2 On-Manifold Adversarial Examples

Paper, Code and Data: davidstutz.de/cvpr2019

3 On-Manifold Robustness *is* **Generalization**

FONTS

EMNIST

FONTS

Related Work

[4, 2]: trade-off between robustness and generalization;
[3, 1]: off- or on-manifold adversarial examples.

FONTS (Synthetic)

- ---- Normal Training ---- Adversarial Training
- Adversarial Training with On-*True*-Manifold Adversarial Examples
- —— Adversarial Training with On-*Learned*-Manifold Adversarial Examples
- ----- Adversarial Training with Adversarial Transformations

4 Robustness Independent of Generalization

EMNIST

- [1] Justin Gilmer et al. "Adversarial Spheres". In: *arXiv.org* abs/1801.02774 (2018).
- [2] Dong Su et al. "Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models". In: *arXiv.org* abs/1808.01688 (2018).
- [3] Thomas Tanay and Lewis Griffin. "A boundary tilting persepective on the phenomenon of adversarial examples". In: *arXiv.org* abs/1608.07690 (2016).
- [4] Dimitris Tsipras et al. "Robustness May Be at Odds with Accuracy". In: *arXiv.org* abs/1805.12152 (2018).