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Abstract
In an effort to clarify the relationship between ro-
bustness and generalization, we assume an under-
lying, low-dimensional data manifold and show:
1. regular adversarial examples leave the mani-
fold; 2. adversarial examples constrained to the
manifold, i.e., on-manifold adversarial examples,
exist; 3. on-manifold adversarial examples are
generalization errors; 4. regular robustness and
generalization are not necessarily contradicting
goals. These assumptions imply that both robust
and accurate models are possible. We confirm
our claims through extensive experiments on syn-
thetic data (with known manifold) as well as on
EMNIST and Fashion-MNIST. This is a short
version of our CVPR’19 work (Stutz et al., 2019).

1. Introduction
Adversarial robustness describes a model’s resilience to
adversarial examples, imperceptibly perturbed images caus-
ing mis-classification. While many defenses against these
attacks have been proposed – some of which have been
shown to be ineffective (Carlini & Wagner, 2017; 2016;
Athalye & Carlini, 2018; Athalye et al., 2018) – the problem
of adversarial robustness is still poorly understood, even
for simple datasets such as EMNIST (Cohen et al., 2017)
and Fashion-MNIST (Xiao et al., 2017). Thus, the phe-
nomenon of adversarial examples itself, i.e., their existence,
has received considerable attention. Early explanations
(Szegedy et al., 2013; Goodfellow et al., 2014) have re-
cently been superseded by the manifold assumption (Gilmer
et al., 2018; Tanay & Griffin, 2016; Song et al., 2018a):
adversarial examples are assumed to leave the underlying,
low-dimensional but usually unknown data manifold. Yet,
on a simplistic toy dataset, Gilmer et al. (2018) also found
adversarial examples on the manifold, as also tried on real
datasets (Song et al., 2018b; Brown et al., 2017; Zhao et al.,
2018), rendering the manifold assumption questionable.
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Figure 1. Adversarial examples (and normalized difference to the
original image) in the context of the underlying manifold, e.g.,
class manifolds “5” and “6” on EMNIST (Cohen et al., 2017).
Regular adversarial examples, not constrained to the manifold (a)
result in (seemingly) random noise patterns. Adversarial examples
constrained to the manifold (b) result in meaningful manipulations
of the image content; however, care needs to be taken that the
actual, true label wrt. the manifold does not change (c).

Similarly, the relation between robustness and generaliza-
tion is of interest. Recently, it has been argued (Tsipras
et al., 2018; Su et al., 2018) that there exists an inherent
trade-off, i.e., robust and accurate models seem impossible.
However, these findings have to be questioned given the
results in (Gilmer et al., 2018; Rozsa et al., 2016) showing
the opposite, i.e., better generalization helps robustness. In
order to address this controversy, we consider adversarial
robustness in the context of the underlying manifold: we
explicitly ask whether adversarial examples leave, or stay
on, the manifold. On EMNIST, for example, considering
the class manifolds for “5” and “6”, as illustrated in Fig. 1,
regular adversarial examples are not guaranteed to lie on
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the manifold, cf. Fig. 1 (a). Adversarial examples can, how-
ever, also be constrained to the manifold, referred to as
on-manifold adversarial examples, cf. Fig. 1 (b); in this
case, it is important to ensure that the adversarial examples
do not actually change their label, i.e., are more likely to be
a “6” than a “5”, as in Fig. 1 (c).

Contributions: Based on this distinction between regular
robustness and on-manifold robustness we show:

1. regular adversarial examples leave the manifold;
2. adversarial examples constrained to the manifold, i.e.,

on-manifold adversarial examples, exist and can be
computed using an approximation of the manifold;

3. on-manifold robustness is essentially generalization;
4. and regular robustness and generalization are not nec-

essarily contradicting goals, i.e., for any arbitrary but
fixed model, better generalization through additional
training data does not worsen robustness.

We conclude that both robust and accurate models are possi-
ble and can, e.g., be obtained through adversarial training on
larger training sets. Additionally, we propose on-manifold
adversarial training to boost generalization in settings where
the manifold is known, can be approximated, or invariances
of the data are known. We present experimental results on a
novel MNIST-like, synthetic dataset with known manifold,
as well as on EMNIST (Cohen et al., 2017) and Fashion-
MNIST (Xiao et al., 2017).

This paper is a short version of our work presented at
CVPR’19; while this paper is self-contained, we refer to
(Stutz et al., 2019) and its supplementary material for further
details and experimental results.

2. Disentangling Adversarial Robustness and
Generalization

Datasets: We use EMNIST (Cohen et al., 2017) and
F(ashion)-MNIST (Xiao et al., 2017) and learn class-specific
VAE-GANs (Larsen et al., 2016; Rosca et al., 2017) to ap-
proximate the underlying manifold. Our synthetic dataset,
FONTS, consists of 28×28 images of the letters “A” to “J”
of 1000 Google Fonts uniformly transformed over transla-
tion, shear, scale and rotation using a (differentiable) spatial
transformer network (Jaderberg et al., 2015). The manifold,
i.e., transformation parameters, font and class, is known.

Networks: We consider classifiers with three convolutional
layers (4 × 4 kernels; stride 2; 16, 32, 64 channels), fol-
lowed by ReLU activations and batch normalization (Ioffe
& Szegedy, 2015), and two fully connected layers. To con-
trol their generalization, we use 250 ≤ N ≤ 40k training
images; for each N , we train 5 models with random weight
initialization (Glorot & Bengio, 2010) and report averages.
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Figure 2. Distance of adversarial examples to the true, on FONTS
(left), or approximated, on EMNIST (right), manifold. We show
normalized histograms of the L2 distance of adversarial examples
to their projections onto the manifold. Regular adversarial exam-
ples exhibit a significant distance to the manifold; on EMNIST,
clearly distinguishable from on-manifold adversarial examples.

Attack: Given an image-label pair (x, y) from an unknown
data distribution p and a classifier f , an adversarial example
is a perturbed image x̃ = x + δ which is mis-classified
by the model, i.e., f(x̃) 6= y. We concentrate on the L∞
white-box attack by Madry et al. (2018) that directly maxi-
mizes the cross-entropy loss, i.e. maxδ L(f(x+δ), y), such
that ‖δ‖∞ ≤ ε and x̃i ∈ [0, 1] using projected gradient
descent. We use 40 iterations and consider 5 restarts, uni-
formly sampled in the ε-ball for ε = 0.3; we attack 1000
test images.

Adversarial Training: An established defense is adversar-
ial training, i.e., training on adversarial examples crafted
during training (Madry et al., 2018). We follow common
practice and train on 50% clean images and 50% adversarial
examples (Szegedy et al., 2013). For ε = 0.3, the attack is
run for full 40 iterations, i.e., is not stopped at the first adver-
sarial example found. Robustness of the obtained network
is measured using attack success rate, i.e., the fraction of
successful attacks on correctly classified test images; lower
success rate indicates higher robustness of the network.

2.1. Adversarial Examples Leave the Manifold

On EMNIST, where particular background pixels are known
to be constant, an adversarial example manipulating these
pixels has zero probability under the data distribution; thus,
the distance to its projection onto the manifold has to be
non-zero. On FONTS, with known generative process in the
form of a decoder, the projection can be obtained iteratively.
On EMNIST, in contrast, the manifold is approximated us-
ing 50 nearest neighbors; the projection can be computed
through least squares. Fig. 2 (left) shows that regular ad-
versarial examples clearly exhibit non-zero distance to the
manifold on FONTS. In fact, the projections of these adver-
sarial examples to the manifold are almost always the origi-
nal test images: the distance to the manifold is essentially
the norm of the corresponding perturbation. This suggests
that the adversarial examples leave the manifold in an al-
most orthogonal direction. On EMNIST, in Fig. 2 (right),
these results can be confirmed in spite of the crude local
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Figure 3. On-manifold robustness is strongly related to generalization, as shown on FONTS, EMNIST and F-MNIST considering on-
manifold success rate and test error. Top: Generalization and on-manifold success rate in relation to the number of training examples.
Bottom: On-manifold success rate plotted against test error.

approximation of the manifold. This shows that adversarial
examples essentially are off-manifold adversarial examples;
this is intuitive as for well-trained classifiers, leaving the
manifold should be the “easiest” way to fool it.

2.2. On-Manifold Adversarial Examples

Given that regular adversarial examples leave the manifold,
we explicitly compute adversarial examples constrained to
the manifold. Here, we assume our data distribution p(x, y)
to be conditional on latent variables z, i.e., p(x, y|z), cor-
responding to the underlying, low-dimensional manifold.
On FONTS, we know the (class-conditional) distributions
p(z|x, y) and p(x|z, y) by construction; on EMNIST and
F-MNIST, we obtain approximations using VAE-GANs
(Larsen et al., 2016; Rosca et al., 2017). Then, given en-
coder enc and decoder dec with z = enc(x), we solve
maxζ L(f(dec(z + ζ)), y) such that ‖ζ‖∞ ≤ η; the image-
constraint, i.e., dec(z + ζ) ∈ [0, 1], is enforced by the
decoder and the η-constraint can, again, be enforced by pro-
jection. Label invariance is ensured by considering only
class-specific encoders and decoders. We use η = 0.3 and
the same optimization procedure as for regular adversarial
examples; on approximated manifolds, the perturbation z+ζ
is additionally constrained to [−2, 2]10, corresponding to a
truncated normal prior from the class-specific VAE-GANs;
we attack 2500 test images.

Fig. 1 (bottom) shows on-manifold adversarial examples for
all datasets. On FONTS, using the true, known class mani-
folds, on-manifold adversarial examples clearly reflect the
transformations of the latent space (1st row). For the learned
class manifolds, the perturbations are less pronounced, of-

ten manipulating boldness or details of the characters (2nd
row). On EMNIST and F-MNIST, on-manifold adversar-
ial examples represent meaningful manipulations, such as
removing the horizontal line of the hand-drawn “7” (3rd
row) or removing the collar and buttons of a shirt (4th row).
Finally, Fig. 2 (right) shows that on-manifold adversarial
examples are closer to the manifold than regular adversarial
examples. Finally, we note that these on-manifold adversar-
ial examples are similar to those crafted in (Gilmer et al.,
2018; Schott et al., 2018; Athalye et al., 2018). However,
we directly compute the perturbation ζ on the manifold in-
stead of computing the perturbation δ in the image space
and subsequently projecting x+ δ to the manifold.

2.3. On-Manifold Robustness is Essentially
Generalization

We argue that on-manifold robustness is nothing different
than generalization: as on-manifold adversarial examples
have non-zero probability under the data distribution, they
are merely generalization errors. This is shown in Fig. 3
where test error and on-manifold success rate are shown.
On FONTS and EMNIST, better generalization, i.e., using
more training images N , also reduces on-manifold success
rate. On F-MNIST, the relationship is less pronounced be-
cause on-manifold adversarial examples, computed using
our VAE-GANs, are not close enough to real generalization
errors. However, even on F-MNIST, there is a clear relation-
ship between on-manifold robustness and generalization.

To exploit this relationship between on-manifold robust-
ness and generalization, we perform on-manifold adversar-
ial training, i.e., training 50%/50 on clean examples and
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Figure 4. Left: Regular robustness and generalization are not contradictory, as demonstrated on FONTS, EMNIST and F-MNIST
considering (regular) success rate plotted against test error. Except for adversarial training, success rate is hardly influenced by test error.
Right: Adversarial training has higher sample complexity than normal training, as shown on FONTS.

on-manifold adversarial examples. Then, on-manifold ad-
versarial training corresponds to robust optimization wrt.
the true, or approximated, data distribution; i.e., training on
“hard” examples. If the manifold cannot be approximated,
we do adversarial training on known invariances of the data,
e.g., using adversarial deformations (Alaifari et al., 2018;
Xiao et al., 2018; Engstrom et al., 2017), referred to as
adversarial transformation training. As on FONTS, we con-
sider 6-degrees-of-freedom transformations corresponding
to translation, shear, scaling and rotation; an η-constraint on
the transformation parameters ensures perceptual similarity.
We note that a similar approach has been used by Fawzi
et al. (2016) as adversarial variants of data augmentation to
boost generalization on, e.g., MNIST (LeCun et al., 1998).

We demonstrate the effectiveness of on-manifold adversar-
ial training in Fig. 3. On FONTS, with access to the true
manifold, on-manifold adversarial training is able to boost
generalization significantly, especially for low N , i.e., few
training images. Our VAE-GAN approximation on FONTS
seems to be good enough to preserve this benefit. On EM-
NIST and F-MNIST, the benefit reduces with the difficulty
of approximating the manifold; this is the “cost” of im-
perfect approximation. However, both on EMNIST and
F-MNIST, identifying invariances and utilizing adversarial
transformation training recovers the boost in generalization.
Overall, on-manifold adversarial training is a promising tool
for improving generalization and we expect its benefit to
increase with better generative models.

2.4. Regular Robustness is Independent of
Generalization

We argue that generalization, measured on the manifold wrt.
the data distribution, is mostly independent of robustness
against regular, possibly off-manifold, adversarial examples
when varying the amount of training data. Specifically, in
Fig. 4 (left) on FONTS, it can be observed that – except
for adversarial training – the success rate is invariant to the
test error. Similar behavior can be observed on EMNIST
and F-MNIST, see Fig. 4 (right). These results imply that

robustness and generalization are not contradicting goals;
in fact, robust and accurate models can be found, however,
might require higher sample complexity (Schmidt et al.,
2018; Khoury & Hadfield-Menell, 2018). This is confirmed
in Fig. 4 (right) where adversarial training requires roughly
twice the amount of training data to reach the same accuracy
as normal training. The higher sample complexity might
be justified by the difficulty of the task: as adversarial ex-
amples tend to leave the manifold, the network has to learn
adversarial, random directions in addition to the actual task.

Our results are in contrast to related work (Tsipras et al.,
2018; Su et al., 2018) claiming that an inherent trade-off
between robustness and generalization exists. However, in
their studied toy dataset, Tsipras et al. (2018) allow the ad-
versary to produce perturbations that change the actual, true
label wrt. the data distribution. Thus, it is unclear whether
the suggested trade-off actually exists for real datasets; our
experiments, at least, seem to indicate the contrary. And Su
et al. (2018) experimentally show a trade-off between ad-
versarial robustness and generalization by studying different
models on ImageNet (Russakovsky et al., 2015), while we
found that the generalization performance does not influence
robustness for any arbitrary, but fixed model.

3. Conclusion
In this paper, we showed that regular adversarial examples
indeed leave the manifold as widely assumed. Addition-
ally, we demonstrated that adversarial examples can also
be found on the manifold, even if the manifold has to be
approximated, e.g., using VAE-GANs. Then, we established
that robustness against on-manifold adversarial examples is
clearly related to generalization and on-manifold adversarial
training exploits this relationship to boost generalization.
Finally, we provided evidence that robustness against regu-
lar, unconstrained adversarial examples and generalization
are not necessarily contradicting goals: for any arbitrary
but fixed model, better generalization, e.g., through more
training data, does not reduce robustness.
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