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Abstract

Obtaining complete 3D representations of relevant ob-
jects in the environment is essential for safe autonomous
driving. To this end, we propose an efficient, learning-based
but weakly-supervised approach for learning 3D shape
completion of cars from sparse 3D point clouds. On Shape-
Net [1] and KITTI [], we demonstrate that our approach
outperforms related approaches [3, 4] while requiring less
supervision or runtime.

1. Introduction

Autonomous vehicles, as in the case of KITTI [2], are
commonly equipped with LiDAR scanners providing a 360
degree point cloud of the environment in real-time. This
point cloud, however, is inherently incomplete: back and
bottom of objects are typically occluded and the observa-
tions are sparse and noisy (Fig. 1, right). However, in or-
der to make informed decisions (e.g., for path planning and
navigation), it is of utmost importance to efficiently estab-
lish a representation of the environment which is as com-
plete as possible. Thus, efficient 3D shape completion of
point clouds for important objects such as cars is essential
for safe autonomous driving.

2. Related Work

Recent approaches to 3D shape completion can be cate-
gorized into data-driven and learning-based methods. Data-
driven approaches, e.g., [3], rely on learned shape priors
and formulate shape completion as an optimization prob-
lem over the corresponding latent space. These approaches
have demonstrated good performance on real data, e.g., on
KITTI [2], but are often slow in practice. Learning-based
approaches, e.g., [4], learn shape completion end-to-end on
synthetic data, e.g., on ShapeNet [1]. These approaches are
efficient, however, require full supervision during training.
Unfortunately, even multiple, aggregated views will not be
complete due to occlusion and sparse sampling of views.

3. Contributions

We propose an amortized maximum likelihood approach
for 3D shape completion avoiding slow optimization and
full supervision. We use a variational auto-encoder [5] to
learn a low-dimensional, latent shape space (Fig. 2, left).

(2) ShapeNet [1] (Synthetic) (b) KITTI [2] (Real)
Figure 1: 3D shape completion results of cars (point cloud
observations in red; completed meshes in beige). Learning
shape completion on real data is challenging due to sparse
and noisy observations and missing ground truth.

Then, 3D shape completion can be formulated as maximum
likelihood fitting over the learned latent shape space — with-
out requiring full supervision. To avoid expensive optimiza-
tion, we amortize, i.e. learn, the maximum likelihood prob-
lem by training a new encoder (Fig. 2, right). On ShapeNet
[1] and KITTTI [2], we compare our approach to state-of-
the-art data-driven and learning-based approaches [3, 4].

This paper summarizes the master thesis [6]'; the results
have also been presented at CVPR’18 [7] and submitted to
an [JCV special issue on robotic vision [&].

4. Method

Problem: We tackle a weakly-supervised formulation
of 3D shape completion: Given (incomplete) observations
X = {x,}N_, (Fig. 2, top right) and reference shapes
Y = {ym}M_, (Fig. 2, top left) both of the same, known
object category, learn a mapping x,, — 3(x,,) such that the
predicted shape §(z,) matches the observation z,, while
being plausible considering the set of reference shapes ).
Here, y,, € RHXWXD are occupancy grids, i.e., voxel
Ym,i = 1 iff the voxel lies on or inside the shape’s sur-
face, or signed distance functions (SDFs), i.e., voxel vy, ;
holds the distance to the surface and its sign indicates in-
side/outside allowing to derive sub-voxel accurate meshes.
For the observations, we write z,, € {0,1, L }AXWxD (o
make missing information explicit: x,, ; = L corresponds
to unobserved voxels, while z,; = 1 and z,,; = 0 cor-
respond to occupied and unoccupied voxels (i.e., observed
points and free space), respectively.

Shape Prior: We use the reference shapes ) to learn a
prior of 3D shapes over a low-dimensional latent space Z =
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(1) Shape Prior: Variational Auto-Encoder
Synthetic Training Data

(2) Shape Inference: Amortized Maximum Likelihood
Real Training Data w/o Ground Truth
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Figure 2: Step 1: a variational auto-encoder (VAE) [5] is trained on cars from ShapeNet [1]. Step 2: the VAE’s decoder is
fixed and retained in order to train a new deterministic encoder on KITTT [2]. The fixed decoder constrains the predictions to
valid cars while the maximum likelihood loss aligns the predictions with the observations.

R®. The prior is learned using a variational auto-encoder
(VAE) [5] where the joint distribution p(y, z) decomposes
into p(y|z)p(z) with p(z) = N(z;0, 1) being a standard
Gaussian. For training the generative model p(y|z), we also
need to approximate the posterior ¢(z|y) ~ p(z|y). Then,
recognition model ¢(z|y) and generative model p(y|z) =
[ L, p(vi|z) take the following form:

q(zly) = N(z; p(y), diag(o”(y))) (1)

1y = JBer(yi0i(2))
Plls) = {Myi;m(z),a?)

for occupancy grids @)
for SDFs

where 11(y),0%(y) € R? and y;(z) or 6;(z) are predicted

using the encoder and decoder, respectively — both imple-

mented as 3D convolutional neural networks (cf. Fig. 2).
The VAE is trained by minimizing the following loss:

Lyvae(w) = =Eq(zpy) [Inp(yl2)] + KL(q(z]y)[p(2)). (3)

where w are the weights of the encoder and decoder (hid-
denin ¢(z|y) and p(y|z)). The Kullback-Leibler divergence
KL is computed analytically and the negative log-likelihood
—Inp(y|z) corresponds to a cross-entropy error for occu-
pancy grids or a sum-of-squared error for SDFs. In practice,
the expectation is computed using one sample z ~ ¢(z|y)
per iteration — we refer to [5] for details.

Shape Inference: After learning the shape prior
p(y,2) = p(y|z)p(z), shape completion can be formu-
lated as a maximum likelihood (ML) problem over the low-
dimensional latent space Z. The corresponding negative
log-likelihood — In p(y, z) to be minimized is

Ly(z) = — Z Inp(y; = z;]z) — Inp(2). )

As the prior p(z) is Gaussian, the negative log-probability
—Inp(z) is a regularizer proportional to ||z and ensures
that high-probability shapes are favored. As before, the gen-
erative model p(y|z) decomposes over voxels; here, we can
only consider actually observed voxels x; # L. Instead of
solving Eq. (4) for each observation independently, we train
a new encoder z(x; w) to learn, i.e., amortize, ML — result-
ing in an amortized ML (AML) approach. To this end, we
keep the generative model p(y|z) fixed and train the weights
w of the encoder z(x; w) using the ML objective:

Lami(w) ==Y Inp(yi = zilz(w;w))
Py ®)
— Alnp(z(z; w))

where A controls the importance of the shape prior. For both
shape representations, the loss results in a cross-entropy er-
ror (for SDFs, a reparameterization is used, cf. [8]).

5. Experiments

Architecture: Encoder and decoder (Fig. 2) consist
of three stages, each comprising two convolutional layers
(including batch normalization and ReLU activations) and
max pooling/nearest neighbor upsampling. Our latent space
is Q = 10-dimensional; we use log 02 = —2in Eq. (2). Oc-
cupancy grids and SDFs are provided in two separate chan-
nels (and occupancy grids are predicted using Sigmoid ac-
tivations). For data augmentation, we apply slight random
rotations, scalings and translations.

Data: On ShapeNet, we generated 500 car shapes for
training the shape prior, 5000 observations with noise for
training the inference model (from separate 500 shapes)
and 1000 observations with ground truth shapes for test-
ing. On KITTI, we extracted car observations from the
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Figure 3: Qualitative results on ShapeNet [1] and KITTI
[2] comparing AML to [3] and [4] (observations in red and
completed shapes in beige). AML visually outperforms
both [3] and [4] while being more efficient and requiring
less supervision.

Velodyne point clouds using the ground truth 3D bound-
ing boxes. Additionally, we constructed partial ground truth
(green in Fig. 3) from multiple views. Overall, we ob-
tained 8442 / 9194 observations for training / testing. All
observations and shapes are voxelized at a resolution of
HXxWxD = 24x54x24.

Baselines: We consider maximum likelihood (ML)
(solving Eq. (4) iteratively), the data-driven approach by
Engelmann et al. [3] and the learning-based approach by
Dai et al. [4] as baselines.

Evaluation: On ShapeNet, we compute the distance
from the reconstructed mesh to the ground truth mesh (ac-
curacy) and vice-versa (completeness) in voxels [vx]. On
KITTI, we compute the average distance of the partial
ground truth to the reconstructed mesh (completeness) in
meters [m]. In all cases, lower is better.

Results: On ShapeNet (Fig. 4, left), our approach clearly
outperforms [3] as well as our ML baseline, illustrating that
learning 3D shape completion is beneficial. Requiring only
2ms per observation, our approach is roughly 84 times faster
than [3]. We also demonstrate comparable performance to
[4] while using only 3.86% supervision. On KITTI (Fig. 4,
right), quantitative evaluation is difficult due to the incom-
plete ground truth; still, our approach slightly outperforms
[3] and [4]. Here, compared to [4], our approach requires
only 6.79% supervision. Qualitatively (Fig. 3), our ap-
proach outperforms both [4] and [3], especially on KITTI
where [3] tends to overfit to noise and [4] (trained on Shape-
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Figure 4: I8 Average of accuracy and completeness in [vx]
on ShapeNet and Il completeness in [m] on KITTI. On
ShapeNet, AML outperforms ML and [3] and is able to
compete with [4]. On KITTI, AML slightly outperforms
both [3] and [4], while being faster and requiring less su-
pervision.

Net) is unable to generalize.
We refer to [8] for more details and experiments.

6. Conclusion

In this work, we presented a novel, learning-based but
weakly-supervised approach to 3D shape completion from
sparse and noisy point clouds. We learn a variational auto-
encoder [5] shape prior on synthetic data and formulate 3D
shape completion as maximum likelihood problem which
can be amortized, i.e., learned. On ShapeNet [ 1] and KITTI
[2], we demonstrated that our approach outperforms related
data-driven approaches [3], while being 84 times faster, and
can compete with learning-based approaches [4], while re-
quiring 93% less supervision.

References

[1] A. X. Chang et al. “ShapeNet: An Information-Rich 3D
Model Repository”. In: arXiv.org 1512.03012 (2015).

[2] A. Geiger et al. “Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite”. In: CVPR. 2012.

[3] F. Engelmann et al. “Joint Object Pose Estimation and Shape
Reconstruction in Urban Street Scenes Using 3D Shape Pri-
ors”. In: GCPR. 2016.

[4] A. Dai et al. “Shape Completion using 3D-Encoder-
Predictor CNNs and Shape Synthesis”. In: CVPR. 2017.

[5] D. P. Kingma and M. Welling. “Auto-Encoding Variational
Bayes”. In: ICLR (2014).

[6] D. Stutz. “Learning Shape Completion from Bounding
Boxes with CAD Shape Priors”. MA thesis. Aachen, Ger-
many: RWTH Aachen University, 2017.

[71 D. Stutz and A. Geiger. “Learning 3D Shape Completion
from Laser Scan Data with Weak Supervision”. In: CVPR.
2018.

[8] D. Stutz and A. Geiger. “Learning 3D Shape Comple-
tion under Weak Supervision”. In: arXiv.org abs/1805.07290
(2018).



