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Problem



Shape completion from point clouds.

Voxelized Observation Voxelized Shape

Problem Overview

2



Problem
Given observations X “ tx1, . . . , xNu and reference
shapes Y “ ty1, . . . , yMu, learn a mapping xn ÞÑ ypxnq
such that ypxnq fits the unknown target shape y˚n.

Reference Shapes ym Observation xn Unknown Shape y˚
n
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Problem
Given observations X “ tx1, . . . , xNu and reference
shapes Y “ ty1, . . . , yMu, learn a mapping xn ÞÑ ypxnq
such that ypxnq fits the unknown target shape y˚n.

Weakly-supervised:

§ known object category;

§ and bounding boxes required on real data.

Problem Definition
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Related Work



Generative shape modeling, including
[Wu et al., 2015, Wu et al., 2016].

Shape completion, following [Sung et al., 2015]:

§ symmetry based approaches;

§ data-driven approaches, including
[Dame et al., 2013, Engelmann et al., 2016];

§ and recently learning-based approaches, including
[Dai et al., 2016].
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Generative shape modeling, e.g.
[Wu et al., 2015, Wu et al., 2016]:

§ Learn a generative model of shapes, e.g. using
generative adversarial networks [Wu et al., 2016];

§ and use for shape classification, manipulation and
generation.

[Wu et al., 2016] [Wu et al., 2015]

Selected Related Work
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Data-driven shape completion, e.g.
[Dame et al., 2013, Engelmann et al., 2016]:

§ Learn shape prior, e.g. using PCA or GP-LVM;

§ and pose shape completion as energy
minimization.

[Engelmann et al., 2016]

Selected Related Work
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Learning-based shape completion, e.g.
[Dai et al., 2016]:

§ Learn an encoder-decoder network on synthetic
data;

§ and post-process if necessary.

[Dai et al., 2016]

Selected Related Work
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Two “philosophies”:

§ data-driven approaches are applicable to real data,
but shape completion involves energy
minimization;

§ learning-based approaches need supervision, but
shape completion is “just a forward pass”.

Discussion
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Question
Do strong shape priors allow us to learn shape
completion under weak supervision?

Goal:

§ Efficient shape completion;

§ and learning on real data.

Discussion
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Proposed Approach



Shape prior.

Learn a variational auto-encoder
[Kingma and Welling, 2013]:

y Encoder z Decoder ỹ

Recognition Model qpz|yq Generative Model ppy|zqppzq

Reconstruction and Prior Loss

Proposed Approach
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Shape inference.

Perform maximum likelihood:

y Encoder z Decoder ỹ

Recognition Model qpz|yq Generative Model ppy|zqppzq

Unsupervised
Maximum Likelihood Loss
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Shape inference.

Perform maximum likelihood:

x Encoder z Decoder ỹ

Recognition Model qpz|yq Generative Model ppy|zqppzq

Maximum Likelihood

Proposed Approach
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Shape inference.

Perform Learn – i.e. amortize – maximum likelihood:

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Unsupervised
Maximum Likelihood Loss

Proposed Approach
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Shape Prior



Learn a variational auto-encoder:

y

z

qpz|yq ppy|zq

ppzq

Shape Prior
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Learn a variational auto-encoder:

y

z

qpz|yq ppy|zq

ppzq Prior ppzq “ N pz|0, Iq

Shape Prior

20



Learn a variational auto-encoder:
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Learn a variational auto-encoder:

y

z

qpz|yq ppy|zq

ppzq Prior ppzq “ N pz|0, Iq

Decoder/Generative Model
ppy|zq “

ś

i Berpyi|θipzqq

Encoder/Recognition Model
qpz|yq “ N pz|µpyq, σ2pyqq

Shape Prior
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Maximum likelihood leads to:

LELBO “ ´Eqpz|yqrlog ppy|zqs ` KLpqpz|yq|ppzqq

reconstruction

§ Encoder: qpz|yq “ N pz|µpyq, σ2pyqq;

§ and decoder: ppy|zq “
ś

i Berpyi|θipzqq.

Shape Prior
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Maximum likelihood leads to:

LELBO “
ÿ

i

LBCEpỹi, yiq ` PRegpµpyq, σ
2
pyqq

“̂

θipzq

reconstruction

prior

§ Encoder: qpz|yq “ N pz|µpyq, σ2pyqq;

§ and decoder: ppy|zq “
ś

i Berpyi|θipzqq.
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Maximum likelihood leads to:

Lpỹ, yq “
ÿ

i

LBCEpỹi, yiq ` PRegpµpyq, σ
2
pyqq

reconstruction

prior

§ Encoder: qpz|yq “ N pz|µpyq, σ2pyqq;

§ and decoder: ppy|zq “
ś

i Berpyi|θipzqq.

Shape Prior
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Training a variational auto-encoder:

y qpz|yq z ppy|zq ỹ

Reconstruction and Prior Loss
Lpỹ, yq

Generating random shapes:

Shape Prior
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Shape Inference



Maximize the likelihood of observation x over the
latent space:

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Maximum Likelihood

Shape Inference
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Minimize the negative log-likelihood of observation x
over the latent space:

argmin
z

´ ln ppy “ x, zq

“ argmin
z

´
ÿ

i

ln ppyi “ xi|zq ´ ln ppzq

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Maximum Likelihood

Shape Inference
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Minimize the negative log-likelihood of observation x
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´ ln ppy “ x, zq
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z

ÿ

i

LBCEpỹi, xiq ´ ln ppzq

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Maximum Likelihood
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Minimize the negative log-likelihood of observation x
over the latent space:

argmin
z

´ ln ppy “ x, zq

“ argmin
z

ÿ

i

LBCEpỹi, xiq`const`
1

2
}z}22

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Maximum Likelihood

Shape Inference
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What observations do we have?

§ Occupied voxels xi “ 1 (from observed points);

Free Space
Voxels xi “ 0

Occupied
Voxels xi “ 1

Unknown Shape y˚

Shape Inference
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What observations do we have?

§ Occupied voxels xi “ 1 (from observed points);

§ unoccupied voxels xi “ 0 (from free space);

§ and unknown voxels “xi “ K”.

Free Space
Voxels xi “ 0

Occupied
Voxels xi “ 1

Unknown Shape y˚

Shape Inference

34



Minimize the negative log-likelihood of observation x
over the latent space:

argmin
z

´ ln ppy “ x, zq

“ argmin
z

ÿ

xi‰K

LBCEpỹi, xiq ` const`
1

2
}z}22

Free Space
Voxels xi “ 0

Occupied
Voxels xi “ 1

Unknown Shape y˚

Shape Inference
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Minimize the negative log-likelihood of observation x
over the latent space:

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Maximum Likelihood

Shape Inference
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Learn to minimize the negative log-likelihood of
observation x over the latent space:

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Unsupervised
Maximum Likelihood Loss

Shape Inference
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Learn to minimize the negative log-likelihood of
observation x over the latent space:

x ÞÑ z̃pxq « argmin
z

´
ÿ

xi‰K

ln ppyi “ xi|zq ´ ln ppzq

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Unsupervised
Maximum Likelihood Loss

Shape Inference
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Learn to minimize the negative log-likelihood of
observation x over the latent space:

Lpỹ, xq “ ´
ÿ

xi‰K

ln ppỹi “ xi|zq ´ ln ppzq

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Lpỹ, xq

Shape Inference
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Learn to minimize the negative log-likelihood of
observation x over the latent space:

Lpỹ, xq “
ÿ

xi‰K

LBCEpỹi, xiq`const`
1

2
}zpxq}22

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Lpỹ, xq

Shape Inference
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Amortized maximum likelihood:

x Encoder z Decoder ỹ

Deterministic zpxq Generative Model ppy|zqppzq

Unsupervised Loss
Lpỹ, xq

§ Can be extended to signed distance functions;

§ learning on real data and efficient inference.

Shape Inference
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Experiments



[Chang et al., 2015]; „ 3k car models, voxelized to
323, and synthetically generated observations.

Shape Observation

C
le

an
N

oi
sy

ShapeNet
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[Geiger et al., 2012]; ground truth 3D bounding
boxes, voxelized to 323, without target shapes.

Observation Observation

KITTI
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x

Deterministic zpxq – Shape Inference
co

nv
+

bn
+

R
eL

U

po
ol

co
nv

+
bn

+
R

eL
U

po
ol

co
nv

+
bn

+
R

eL
U

po
ol

co
nv

+
bn

+
R

eL
U

po
ol fc

Generative Model ppy|zq – fixed

zfcup

co
nv

+
bn

+
R

eL
U

up

co
nv

+
bn

+
R

eL
U

up

co
nv

+
bn

+
R

eL
U

up

co
nv

+
bn

+
R

eL
U

θpzq
ỹ
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Input Prediction Baseline Target

Results on ShapeNet
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Input Prediction Baseline Target

Results on KITTI
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Conclusion



We proposed an amortized maximum likelihood
framework for learning shape completion in a
weakly-supervised setting.

x Encoder z Decoder ỹ

Shape Inference Shape Prior

Unsupervised
Maximum Likelihood Loss

Summary
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Our experiments suggest that:

Hypothesis

Strong shape priors allow to learn shape completion
under weak supervision.

§ Additionally, inference involves “a simple forward
pass”.

Conclusion
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Improve proposed amortized maximum likelihood
framework on signed distance functions.

Input Prediction Mesh

Future Work
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Increase resolution to learn details.

[Riegler et al., 2016] [Nießner et al., 2013]
[Fan et al., 2016]

Future Work
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Thanks



Rough categorization following [Sung et al., 2015]:

§ symmetry based approaches, e.g.
[Thrun and Wegbreit, 2005, Pauly et al., 2008,
Zheng et al., 2010, Kroemer et al., 2012];

§ data-driven approaches, e.g. [Pauly et al., 2005,
Li et al., 2015, Nan et al., 2012, Gupta et al., 2015,
Dame et al., 2013, Engelmann et al., 2016];

§ and recently learning-based approaches, e.g.
[Firman et al., 2016, Smith and Meger, 2017,
Dai et al., 2016, Sharma et al., 2016,
Rezende et al., 2016, Fan et al., 2016].

Appendix – Related Work
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Input Prediction Baseline Target

Appendix – Results on KITTI
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