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Problem. Minimize composite function

min h(z) = min (f(x) + g(x)) (1)

zcRd neRd

where
- f:R% - R e C! with L-Lipschitz continuous gradient;

— g :dom(g) C R? — R, is proper closed convex and lower
semicontinuous;

— and h coercive and bounded below by

—00 < hpin = inf h(z).
zcRd

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term to solve Equation (1) iteratively.
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Related Work

Gradient descent for h € C*:
2 = 2 _ o Vh(z™).
Gradient descent with inertial force/momentum term:
) = ) 0, V(™) 4 B, (2™ — 2(1),
Proximal point for h being proper closed convex:
2™+ = prox, ,(z™).

Forward-backward splitting for h = f + g with f € C' and f, ¢ being
proper closed convex:

2t = proxang(x(”) — o, Vf(z™)).
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Algorithm — lterates and Backtracking

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term.
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2D = proxang(a:(”) - aan(x(")) + ﬁn(a:(")

— 2" Dy)
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Algorithm — Iterates and Backtracking

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term

2"t = prox,, (2™ — a, Vf(@™) + B, (2™ —2*7V)) ()
with step size parameters (a;,)neny @and momentum parameters (3, )nen-
Backtracking to estimate the local Lipschitz constant L,, such that
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Lo, (n . (3)
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Algorithm — Iterates and Backtracking

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term

2™ = prox,, ,(z" — a, V(@) + B,z — 27y (2)
with step size parameters (a;,)neny @and momentum parameters (3, )nen-
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Algorithm — iPiano

Algorithm iPiano.

1: choose ¢;, ¢y > 0 close to zero, L_; > 0, > 1, 2(0)
2: (1) .= 2(0)

3:forn=1,...do

4.

5:

6:

7:

8: choose a,, > ¢y, 8, >0

9:

10: ("t = ProX,, ¢ (x(”) — a, V(@) + B, (z™ — :1:(”_1)))
11:

12: end for
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Algorithm iPiano.

1: choose ¢;, ¢y > 0 close to zero, L_; > 0, > 1, 2(0)
2: (1) .= 2(0)

3:forn=1,...do

4:

5:

6:

7:  repeat

8: choose o, > ¢1, B, > 0

9: untilén:zi—%—ﬁ—”ﬂZ'yn-:é—@—g—zZQ

10: a0 = prox, , (20 — 4,V f(2) + B, () — 5(-1))
11:
12: end for
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Algorithm — iPiano

Algorithm iPiano.

1: choose ¢1, ¢z > 0 close to zero, L_1 > 0,n > 1, (9
2: z(=1) .= 4(0)

3: forn=1,...do

4. L, = %Ln,l

5:  repeat
6: Ly :=nL,
7: repeat
8 choose ay, > ¢1, B > 0
Lﬂ, n — 1 Ln n
9: Unt||5 7—7—%27n—a—7—§72C2

10: 2+ = prox,, g (2™ — @, V(™) + B, (x() — 2(n=1)y)
11:  until (3) is satisifed for z("+1)
12: end for
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Algorithm — Monotonically Decreasing ¢,

Lemma

Foreachn € N, given L,, > 0, there exist a,, < 2(1 — 3,)/L,, and
0 < B, < 1 asiniPiano such that co < 7, < 6, and (6, )nen IS
monotonically decreasing.
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Lemma

Foreachn € N, given L,, > 0, there exist a,, < 2(1 — 3,)/L,, and
0 < B, < 1 asiniPiano such that co < 7, < 6, and (6, )nen IS

monotonically decreasing.

Proof Sketch.
With by, := (6,1 + Z2)/(c2 + L)
1-Fn _ 201 = Bn)

Cco + % Ly,
Bn

771202 <:>04n§

571—1 > 671 =

o
L, = %< L
c2 + On_1+ 5
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Convergence — Overview

Convergence analysis is based on three requirements regarding

(4D, 500) s=h(a D) 4 Gy [ — 23

::h(x("+1)) + Ont1 A721+1

H;

n+1

and the sequence
(Z(nH))neN = (x(nﬂ)ﬂ’(n))neN C R*

generated by iPiano.
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Convergence — Overview

Convergence analysis is based on three requirements regarding
Hs, ("0, 20) =@ D) 4+ 5 2 — 2l V)3

=h(a"t) 4 6,44 Al

n+1(

and the sequence
(Z(nH))neN = (x(nﬂ)ﬂ’(n))neN C R*

generated by iPiano.

Furthermore, Hj;, is required to satisfy the Kurdyka-Lojasiewicz property

[Loj93, Kur98] at a critical point z of Hs,,.
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Convergence — Requirements

Definition
Givena, b > 0. H : R* — R, and a sequence (z(™),cn C R?¢ satisfy:
(H1) if for each n € N, it holds

H(z)) 4 aA2 < H(zM);
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(H1) if for each n € N, it holds

H(z)) 4 aA2 < H(zM);

(H2) if for each n € N, there exists w1 € 9H (2(*+1)) with
(n+1) b ,
[|w l2 < §(An + Ant1);

(H3) if there exists a subsequence (™)) ey with 2(%) — 2 = (7, %)
and H(z(")) — H(Z) for j — oo.

David Stutz | June 2, 2016 12/34



Convergence — Requirements, Condition (H1)

Lemma
Hs, and (™), cn as generated by iPiano satisfy Condition (H1), in
particular for eachn € N it holds

Hs, o (2)) + 4, A2 < Hy, (2™);

n+1
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Convergence — Requirements, Condition (H1)

Lemma
Hs, and (™), cn as generated by iPiano satisfy Condition (H1), in
particular for eachn € N it holds

Proof Sketch.
lteration (Equation (2)) =
(n) _ g(n+1)
w = ro-r _ Vf(l,(n)) + &(ZL‘(”) _ x(n—l)) c ag(l‘(n-i-l))

(679 Qp
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Convergence — Requirements, Condition (H1)

Proof Sketch (cont'd).
With w € dg(x("*1), using the convexity of g,
g(@™) < g(a™) — w7 (2™ —zlnD),
and the L,,-Lipschitz continuity of V f,
L
) = ) — 4 N D — o) 4 2l — sl

it can be shown

) < H) — 8,021, + 5,08 — 703

O

which implies the claim as d,, is monotonically decreasing.
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Convergence — Requirements, Condition (H2)

Lemma

Hs and (2™),cn as generated by iPiano satisfy Condition (H2), i.e. for
eachn € N there exists w("*V) € 0Hs, ., (2"*1)) such that

oDl < (A + Anga).
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Convergence — Requirements, Condition (H2)

Lemma

Hs and (2™),cn as generated by iPiano satisfy Condition (H2), i.e. for
eachn € N there exists w1 € 9H;, . | (2("*Y)) such that
lw™ D]y < Z(An + Appa).

Proof Sketch.
For w™D) € 9H; _ (z+D) itis wtD) = (w{™ w Y with

(TL+1) = ag( (n+1) >_|_ vf( (n+1) )_|_ 25n($(n+1) _ x(n))
wgn—‘,—l) _ _25n(x(n+1) _ a:(”))

and

1 " 7
Hw(n—i_l)||2 L o0 & (; + 46n + Ln)An+1 + EA < (AnJrl + An)
n C1

Tl
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Convergence — Requirements, Condition (H3)

Lemma

Hs and (2™),cn as generated by iPiano satisfy Condition (H1), i.e.
there exists a subsequence (2(™)) ey with 2(%) — z = (#,%) and
Hj,, (2")) = Hs(Z) for j — co.
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Convergence — Requirements, Condition (H3)

Lemma

Hs and (2™),cn as generated by iPiano satisfy Condition (H1), i.e.
there exists a subsequence (2(™)) ey with 2(%) — z = (#,%) and
Hj,, (2")) = Hs(Z) for j — co.

Proof Sketch.

Claim 1: by summing Condition (H1) and deducing >_°° ; A2 < oo it can
be shown that lim,,_, A, = 0.

Claim 2: from the coercivity of h and the Bolzano-Weierstrass theorem it
follows the existence of a subsequence (")) ;cy with.

Then:

lim Hj, (™Y 20 = Hy(E, %) = h(F).

j*)OO 7zj+1
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Convergence — Kurdyka-Lojasiewicz Property

The Kurdyka-Lojasiewicz property is intended to relate the behavior of
the subdifferential 0 H to the function values.
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Convergence — Convergence Theorem

Theorem

Let H be proper lower semicontinuous, satisfying the
Kurdyka-Lojasiewicz property at z = (&, ) specified by Condition (H3),
and (2(™),,cn, satisfying Conditions (H1) - (H3). Then (™) ,exn
converges to & such that z is a critical point of H.
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Convergence — Convergence Theorem

Theorem

Let H be proper lower semicontinuous, satisfying the
Kurdyka-Lojasiewicz property at z = (&, ) specified by Condition (H3),
and (2(™),,cn, satisfying Conditions (H1) - (H3). Then (™) ,exn
converges to & such that z is a critical point of H.

It can further been shown that the convergence rate is O (1/1/n) for the
residual

r(z) ==z — prox,(z — Vf(z))

in Ly norm.
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Convergence — Convergence Theorem (cont'd)

Proof Sketch.
The proof is based on the following claim:
Z A< 5(B0— An) + 2 [$(HED) — HE) — o(HE) — H(2)]

a

which is shown by induction. Then, it follows > j A,, < co and

(") — . Using the Kurdyka-Lojasiewicz property it can be shown that
H(z(™) — H(%). With Condition (H2) it also follows that  is a critical
point of H. O]
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Implementation — Initialization

Remember, derived bounds for oy and Sy:

2(1 — Bo)

oy < ——;

Lo
by — 1 o1+ L
0 with by i= —— 2.
c2 +

<
50_[)0—%

Guessing an appropriate [, is obviously easier than guessing d_1, so fix

Bo and estimate L( using
IV f () fAVf(i)lb <L
EQEE

for & = prox, (z(® — V f(2(?)).

21/34
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Remember, derived bounds for oy and Sy:

2(1 — Bo)
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Lo
by — 1 o1+ L
0 with by i= —— 2.
c2 +

<
50_[)0—%

Guessing an appropriate [, is obviously easier than guessing d_1, so fix

Bo and estimate L( using
IV f () fAVf(i)lb <L
[=© = &

for & = prox, (z(® — V f(2(®)).

21/34

David Stutz | June 2, 2016



Implementation — Initialization (cont’d)

In practice, fix K > 100 and compute

aék)::ao—kao Clwithao::(L([H_éBCOg)andk:L...,K
until a(()k) satisfies
1 Lo 0 1 Lo  fo
50::7_7_7270::7_7_7262.
a(()k) 2 2a((]k) a((]k) 2 0((()k)
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Implementation — Initialization (cont’d)

In practice, fix K > 100 and compute

aék)::ao—kao Clwithao::([fﬁ_fsz)andkzl,...,ff
until a(()k) satisfies
1 Lo 0 1 Lo  fo
pi=—F— = —— 5 2VW'=—"F7— - — 5 > Ca.
a(()k) 2 2a((]k) a((]k) 2 a(()k)
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Implementation — Initialization (cont’d)

In practice, fix K > 100 and compute

aék)::ao—kao Clwithao::([fﬁ_fsz)andkzl,...,ff
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1 Lo 0 1 Lo  fo
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Implementation — Finding «,, and S,

Given L,,_; and n > 1, find the smallest [ € N such that
Ly :=n'Lyn_q (4)
satisfies

F@"D) < fa) 49 fat™)T (20D — 2 )

P ) — ]

2

Alternatively, instead of L,,_1, use

IV f(z=D) = V(@)
D — &[]

e =

with & = prox, (z("~V — V f(2("~1))) as starting point for Equation (4).
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Implementation — Finding «,, and (3,, (cont’'d)

Similar to initialization, fix J, K > 100 and compute

On—1 + L
1T 2 andj=0,...,J,

, bp—1  jb,—1 ,
By = T = L T with b, = T
bn—5 Jbo—3 e+ 3
(k) ., _ptn— 4 ith .:M E=1 K
o, = ap % wit n - (L F 22) and Sy

until By(lj) and aq(f) satisfy

s oo L Lo 8P 1 La BP
T P T  m
and
5n§5n—1

24/34
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Implementation — Finding «,, and (3,, (cont’'d)

Similar to initialization, fix J, K > 100 and compute

by —1 jby—1 On—1+ Lo
BY = L IO ith b= LT E and =0,
bn—5 Jbo—3 e+ 3
(k) ., _ptn 4 ith .:M E=1 K
o, = ap % wit n - (L F 22) and Sy

until B,(lj ) and aq(f) satisfy

s L Lo B 1L B
=y T s T 2 gy 202
aﬁf“) 2 20&) ozgf) 2 oz%k)

and
571 < 671—1
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Implementation — Finding «,, and (3,, (cont’'d)

Similar to initialization, fix J, K > 100 and compute

On—1 + L
1T 2 andj=0,...,J,

. b, — 1 j by — 1 ,
BY) = T z T With by, = 'y
bn -3 J bn -3 C2 + Tn
(k) ., _ptn— 4 ith .:M E=1 K
o, = ap % wit n (L F 22) and Sy
until B,(lj ) and aq(f) satisfy
1 L, B 1 L, By
' =~ 2= oy T 2 G2
aﬁf“) 2 20&) ozgf) 2 oz%k)
and
571 < 671—1

24/34

David Stutz | June 2, 2016



Implementation — Finding «,, and (3,, (cont’'d)

Similar to initialization, fix J, K > 100 and compute

On—1 + L
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By = T = L T with b, = T
bn—5 Jbo—3 e+ 3
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o, = ap % wit n - (L F 22) and Sy
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Denoising — Model

Given a noisy image u(?) : Q = [0,1]2 — [0, 1], minimize

h(u; u®, ) Z/Qm(U(w)—u(o)(w))dw+A/sz(IIW(x)II2)dw
with

Plabs = || and p sqr(w) = %

332
p2(x) = log <1 + 02> :
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Denoising — Model
Given a noisy image u(?) : Q = [0,1]2 — [0, 1], minimize
h(u;ul® ) = / pr(u(z) — ul(z))dz + )\/ p2([|Vu(z)||2)dx
Q Q
with
Pl,abs = |z| and Pl,sqr($) = $2§
[132
p2(x) = log <1 + 2> :
g
p1.sqr and py are differentiable; the proximal mapping of p1 abs(z — 2(?)) is

; 0
ProXy,, ., (2) = max(0, |z — a) - sign(z) — 20,
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Denoising — Results

P1,abs P1,sqr P1,abs P1,sqr P1,abs P1,sqr P1,abs P1,sqr
A=02 A=02 A=04 AX=04 X=06 A=06 A=08 AX=0.8

Figure: Signal denoising experiment; input signal shown on the left with the
perturbed/noisy signal on its right. Results using p1 aps @and p1 sqr With
A € {0.2,0.4,0.6,0.8} are shown.
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Denoising — Convergence

T T T [

200 W 0.4 :

iPiano iPiano
100 |- | ] 02 an |
h(@t) Bn
PR Ln An
0 | 0 | | |
0 50 100 150 0 50 100 150
n n

Figure: Convergence of iPiano. Shown is the value of the objective function
h(z(n)) for each iterate z(n), n > 0, as well as the corresponding parameters
n, Bn and L,,. Furthermore, A, := ||z(®) — z(»=1)||, is shown.
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Denoising — Results (cont’d)

Figure: Image denoising experiment; noisy image in the top row, pi aps in the
middle row and p1 sq in the bottom row.
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Binary Segmentation — Model

Binary segmentation based on an approximation of the Mumford-Shah
model [MS89, She05]; u : [0, 1]? — [~1,1]:

_ 2\2
he(u; ep, e, u®,A) :/ (9e|yvu(x)yy§ + MW) i
Q 64e

+ )\/Q <1+2u(a;)>2 (u® () — ey)?da
+>\/Q (1_27“‘(””)>2(u<0><x) e Vda.
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Binary Segmentation — Model

Binary segmentation based on an approximation of the Mumford-Shah

model [MS89, She05]; u : [0, 1]? — [~1,1]:

_ 2\2
he(u; ep, e, u®,A) :/ (9e|yvu(x)yy§ + (1“(”5))) i
Q 64e

+ )\/Q (W)Q (u® () — ey)?da

+>\/Q (W)Q(u@(m) e Vda.

(It can be shown, that for ¢ — 0,

[ (seivutag + S22 o

approximates |u|py.)
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Binary Segmentation — Model

Binary segmentation based on an approximation of the Mumford-Shah
model [MS89, She05]; u : [0, 1]? — [~1,1]:

_ 2\2
he(u; ep, e, u®,A) :/ (9e|yvu(x)yy§ + (1“(”5))) i
Q 64e

+ )\/Q (W)Q (u® () — ey)?da
+>\/Q (W)Q(u@(m) e Vda.

(It can be shown, that for ¢ — 0,
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approximates |u|py.)
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Binary Segmentation — Results (cont'd)

Figure: Segmentation results for thresholds 7 = —0.2,0.0, 0.2 and using gsq;
the foreground segment Sy is depicted in white.
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Conclusion
We discussed the minimization of composite functions of the form

min h(z) = %@l(f(x) + g()).
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Conclusion

We discussed the minimization of composite functions of the form

min A(x) = min (f(z) + g(z)).

zER4 neRd

Ochs et al. [OCBP14] proposed the iPiano algorithm to solve this
problem under to following requirements:

— g proper closed convex and lower semi continuous;
— f € C' with L-Lipschitz continuous V f;
— h coercive and bounded below;

— and Hs, (2™, 2("=D) = h(2™) + §, A, satisfying the
Kurdyka-Lojasiewicz property [L0j93, Kur98] at a critical point.
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Conclusion

We discussed the minimization of composite functions of the form

min A(x) = min (f(z) + g(z)).

zER4 neRd

Ochs et al. [OCBP14] proposed the iPiano algorithm to solve this
problem under to following requirements:

— g proper closed convex and lower semi continuous;
— f € C' with L-Lipschitz continuous V f;
— h coercive and bounded below;

— and Hs, (2™, 2("=D) = h(2™) + §, A, satisfying the
Kurdyka-Lojasiewicz property [L0j93, Kur98] at a critical point.

The algorithm can be implemented efficiently in C++ and used to solve
image processing tasks.
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Appendix — Kurdyka-Lojasiewicz Property

Definition

H has the Kurdyka-Lojasiewicz property at point Z € dom(9H) there

exist n € (0, oo], a neighborhood U of Z, and a continuous concave

function ¢ : [0,17) — R, such that

- ¢ € CY(0,7m)), (0) = 0, and for all s € (0,7), ¢'(s) > 0;

—andforall z c Un{z ¢ R?|H(%) < H(z) < H(Z) + 7} the
Kurdyka-Lojasiewicz inequality holds:

§(H(2) - H) inf 2> 1
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Definition

H has the Kurdyka-Lojasiewicz property at point Z € dom(9H) there

exist n € (0, oo], a neighborhood U of Z, and a continuous concave

function ¢ : [0,17) — R, such that

- ¢ € CY(0,7m)), (0) = 0, and for all s € (0,7), ¢'(s) > 0;

—andforall z c Un{z ¢ R?|H(%) < H(z) < H(Z) + 7} the
Kurdyka-Lojasiewicz inequality holds:

§(H(2) - H) inf 2> 1

Intuitively, for H € C', this means that ¢ has to be steep around critical
points Z of H where V H is flat.
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