iPiano: Inertial Proximal Algorithm for Non-Convex Optimization

David Stutz

June 2, 2016

Table of Contents

Problem

2 Related Work

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Problem. Minimize composite function

$$\min_{x \in \mathbb{R}^d} h(x) = \min_{n \in \mathbb{R}^d} (f(x) + g(x)) \tag{1}$$

where

Problem. Minimize composite function

$$\min_{x \in \mathbb{R}^d} h(x) = \min_{n \in \mathbb{R}^d} (f(x) + g(x))$$
(1)

where

- $f : \mathbb{R}^d \to \mathbb{R} \in C^1$ with *L*-Lipschitz continuous gradient;

Problem. Minimize composite function

$$\min_{x \in \mathbb{R}^d} h(x) = \min_{n \in \mathbb{R}^d} (f(x) + g(x)) \tag{1}$$

where

- $-f: \mathbb{R}^d \to \mathbb{R} \in C^1$ with *L*-Lipschitz continuous gradient;
- $g: \mathrm{dom}(g) \subset \mathbb{R}^d \to \mathbb{R}_\infty$ is proper closed convex and lower semicontinuous;

Problem. Minimize composite function

$$\min_{x \in \mathbb{R}^d} h(x) = \min_{n \in \mathbb{R}^d} (f(x) + g(x)) \tag{1}$$

where

- $-f: \mathbb{R}^d \to \mathbb{R} \in C^1$ with *L*-Lipschitz continuous gradient;
- $g: \operatorname{dom}(g) \subset \mathbb{R}^d \to \mathbb{R}_\infty$ is proper closed convex and lower semicontinuous;
- $\mbox{ and } h$ coercive and bounded below by

$$-\infty < h_{\min} := \inf_{x \in \mathbb{R}^d} h(x).$$

Problem. Minimize composite function

$$\min_{x \in \mathbb{R}^d} h(x) = \min_{n \in \mathbb{R}^d} (f(x) + g(x)) \tag{1}$$

where

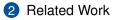
- $-f: \mathbb{R}^d \to \mathbb{R} \in C^1$ with *L*-Lipschitz continuous gradient;
- $g: \operatorname{dom}(g) \subset \mathbb{R}^d \to \mathbb{R}_\infty$ is proper closed convex and lower semicontinuous;
- $\mbox{ and } h$ coercive and bounded below by

$$-\infty < h_{\min} := \inf_{x \in \mathbb{R}^d} h(x).$$

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term to solve Equation (1) iteratively.

Table of Contents

1 Problem



3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Gradient descent for $h \in C^1$:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}).$$

Gradient descent with inertial force/momentum term:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}).$$

Proximal point for h being proper closed convex:

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n h}(x^{(n)}).$$

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n g}(x^{(n)} - \alpha_n \nabla f(x^{(n)})).$$

Gradient descent for $h \in C^1$:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}).$$

Gradient descent with inertial force/momentum term:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}).$$

Proximal point for h being proper closed convex:

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n h}(x^{(n)}).$$

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n g}(x^{(n)} - \alpha_n \nabla f(x^{(n)})).$$

Gradient descent for $h \in C^1$:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}).$$

Gradient descent with inertial force/momentum term:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}).$$

Proximal point for h being proper closed convex:

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n h}(x^{(n)}).$$

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n g}(x^{(n)} - \alpha_n \nabla f(x^{(n)})).$$

Gradient descent for $h \in C^1$:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}).$$

Gradient descent with inertial force/momentum term:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}).$$

Proximal point for h being proper closed convex:

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n h}(x^{(n)}).$$

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n g}(x^{(n)} - \alpha_n \nabla f(x^{(n)})).$$

Gradient descent for $h \in C^1$:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}).$$

Gradient descent with inertial force/momentum term:

$$x^{(n+1)} = x^{(n)} - \alpha_n \nabla h(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}).$$

Proximal point for h being proper closed convex:

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n h}(x^{(n)}).$$

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n g}(x^{(n)} - \alpha_n \nabla f(x^{(n)})).$$

Table of Contents

1 Problem

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term.

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term:

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n g}(x^{(n)} - \alpha_n \nabla f(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}))$$
(2)

with step size parameters $(\alpha_n)_{n \in \mathbb{N}}$ and momentum parameters $(\beta_n)_{n \in \mathbb{N}}$.

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n g}(x^{(n)} - \alpha_n \nabla f(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}))$$
(2)

with step size parameters $(\alpha_n)_{n \in \mathbb{N}}$ and momentum parameters $(\beta_n)_{n \in \mathbb{N}}$.

Backtracking to estimate the local Lipschitz constant L_n such that

$$f(x^{(n+1)}) \le f(x^{(n)}) + \nabla f(x^{(n)})^T (x^{(n+1)} - x^{(n)}) + \frac{L_n}{2} \|x^{(n+1)} - x^{(n)}\|_2^2$$
(3)

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term

$$x^{(n+1)} = \operatorname{prox}_{\alpha_n g}(x^{(n)} - \alpha_n \nabla f(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}))$$
(2)

with step size parameters $(\alpha_n)_{n \in \mathbb{N}}$ and momentum parameters $(\beta_n)_{n \in \mathbb{N}}$.

Backtracking to estimate the local Lipschitz constant L_n such that

$$f(x^{(n+1)}) \le f(x^{(n)}) + \nabla f(x^{(n)})^T (x^{(n+1)} - x^{(n)}) + \frac{L_n}{2} \|x^{(n+1)} - x^{(n)}\|_2^2$$

(3)

Algorithm - iPiano

Algorithm iPiano.

1: choose
$$c_1, c_2 > 0$$
 close to zero, $L_{-1} > 0, \eta > 1, x^{(0)}$
2: $x^{(-1)} := x^{(0)}$
3: for $n = 1, \dots$ do
4:
5:
6:
7:
8: choose $\alpha_n \ge c_1, \beta_n \ge 0$
9:
10: $x^{(n+1)} = \operatorname{prox}_{\alpha_n g} \left(x^{(n)} - \alpha_n \nabla f(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}) \right)$
11:
12: end for

Algorithm – iPiano

Algorithm iPiano.

1: choose
$$c_1, c_2 > 0$$
 close to zero, $L_{-1} > 0, \eta > 1, x^{(0)}$
2: $x^{(-1)} := x^{(0)}$
3: for $n = 1, ...$ do
4:
5:
6:
7: repeat
8: choose $\alpha_n \ge c_1, \beta_n \ge 0$
9: until $\delta_n := \frac{1}{\alpha_n} - \frac{L_n}{2} - \frac{\beta_n}{2\alpha_n} \ge \gamma_n := \frac{1}{\alpha_n} - \frac{L_n}{2} - \frac{\beta_n}{\alpha_n} \ge c_2$
10: $x^{(n+1)} = \operatorname{prox}_{\alpha_n g} \left(x^{(n)} - \alpha_n \nabla f(x^{(n)}) + \beta_n (x^{(n)} - x^{(n-1)}) \right)$
11:
12: end for

1 .

Algorithm - iPiano

Algorithm iPiano.

1: choose
$$c_1, c_2 > 0$$
 close to zero, $L_{-1} > 0, \eta > 1, x^{(0)}$
2: $x^{(-1)} := x^{(0)}$
3: for $n = 1, ...$ do
4: $L_n := \frac{1}{\eta}L_{n-1}$
5: repeat
6: $L_n := \eta L_n$
7: repeat
8: choose $\alpha_n \ge c_1, \beta_n \ge 0$
9: until $\delta_n := \frac{1}{\alpha_n} - \frac{L_n}{2} - \frac{\beta_n}{2\alpha_n} \ge \gamma_n := \frac{1}{\alpha_n} - \frac{L_n}{2} - \frac{\beta_n}{\alpha_n} \ge c_2$
10: $x^{(n+1)} = \operatorname{prox}_{\alpha_n g} \left(x^{(n)} - \alpha_n \nabla f(x^{(n)}) + \beta_n(x^{(n)} - x^{(n-1)}) \right)$
11: until (3) is satisifed for $x^{(n+1)}$
12: end for

Algorithm – Monotonically Decreasing δ_n

Lemma

For each $n \in \mathbb{N}$, given $L_n > 0$, there exist $\alpha_n < 2(1 - \beta_n)/L_n$ and $0 \le \beta_n < 1$ as in iPiano such that $c_2 \le \gamma_n \le \delta_n$ and $(\delta_n)_{n \in \mathbb{N}}$ is monotonically decreasing.

Algorithm – Monotonically Decreasing δ_n

Lemma

For each $n \in \mathbb{N}$, given $L_n > 0$, there exist $\alpha_n < 2(1 - \beta_n)/L_n$ and $0 \le \beta_n < 1$ as in iPiano such that $c_2 \le \gamma_n \le \delta_n$ and $(\delta_n)_{n \in \mathbb{N}}$ is monotonically decreasing.

Proof Sketch.

With
$$b_n := (\delta_{n-1} + \frac{L_n}{2})/(c_2 + \frac{L_n}{2})$$
:
 $\gamma_n \ge c_2 \iff \alpha_n \le \frac{1 - \beta_n}{c_2 + \frac{L_n}{2}} < \frac{2(1 - \beta_n)}{L_n}$
 $\delta_{n-1} \ge \delta_n \iff \frac{1 - \beta_n}{c_2 + \frac{L_n}{2}} \ge \alpha_n \ge \frac{1 - \frac{\beta_n}{2}}{\delta_{n-1} + \frac{L_n}{2}} \implies \beta_n \le \frac{b_n - 1}{b_n - \frac{1}{2}}$

Table of Contents

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Convergence analysis is based on three requirements regarding

$$H_{\delta_{n+1}}(x^{(n+1)}, x^{(n)}) := h(x^{(n+1)}) + \delta_{n+1} \underbrace{\|x^{(n)} - x^{(n-1)}\|_2^2}_{:= h(x^{(n+1)}) + \delta_{n+1}} \underbrace{\Delta_{n+1}^2}_{2n+1}$$

and the sequence

$$(z^{(n+1)})_{n \in \mathbb{N}} := (x^{(n+1)}, x^{(n)})_{n \in \mathbb{N}} \subset \mathbb{R}^{2d}$$

generated by iPiano.

Convergence analysis is based on three requirements regarding

$$H_{\delta_{n+1}}(x^{(n+1)}, x^{(n)}) := h(x^{(n+1)}) + \delta_{n+1} \underbrace{\|x^{(n)} - x^{(n-1)}\|_2^2}_{:= h(x^{(n+1)}) + \delta_{n+1}} \Delta_{n+1}^2$$

and the sequence

$$(z^{(n+1)})_{n \in \mathbb{N}} := (x^{(n+1)}, x^{(n)})_{n \in \mathbb{N}} \subset \mathbb{R}^{2d}$$

generated by iPiano.

Convergence analysis is based on three requirements regarding

$$H_{\delta_{n+1}}(x^{(n+1)}, x^{(n)}) := h(x^{(n+1)}) + \delta_{n+1} \underbrace{\|x^{(n)} - x^{(n-1)}\|_2^2}_{:= h(x^{(n+1)}) + \delta_{n+1}} \underbrace{\Delta_{n+1}^2}_{\Delta_{n+1}^2}$$

and the sequence

$$(z^{(n+1)})_{n \in \mathbb{N}} := (x^{(n+1)}, x^{(n)})_{n \in \mathbb{N}} \subset \mathbb{R}^{2d}$$

generated by iPiano.

Convergence analysis is based on three requirements regarding

$$H_{\delta_{n+1}}(x^{(n+1)}, x^{(n)}) := h(x^{(n+1)}) + \delta_{n+1} \underbrace{\|x^{(n)} - x^{(n-1)}\|_2^2}_{:= h(x^{(n+1)}) + \delta_{n+1}} \underbrace{\Delta_{n+1}^2}_{2n+1}$$

and the sequence

$$(z^{(n+1)})_{n \in \mathbb{N}} := (x^{(n+1)}, x^{(n)})_{n \in \mathbb{N}} \subset \mathbb{R}^{2d}$$

generated by iPiano.

Furthermore, H_{δ_n} is required to satisfy the Kurdyka-Lojasiewicz property [Loj93, Kur98] at a critical point \tilde{z} of H_{δ_n} .

Convergence – Requirements

Definition

Given a, b > 0. $H : \mathbb{R}^{2d} \to \mathbb{R}_{\infty}$ and a sequence $(z^{(n)})_{n \in \mathbb{N}} \subset \mathbb{R}^{2d}$ satisfy:

(H1) if for each $n \in \mathbb{N}$, it holds

 $H(z^{(n+1)}) + a\Delta_n^2 \le H(z^{(n)});$

Convergence – Requirements

Definition

Given a, b > 0. $H : \mathbb{R}^{2d} \to \mathbb{R}_{\infty}$ and a sequence $(z^{(n)})_{n \in \mathbb{N}} \subset \mathbb{R}^{2d}$ satisfy: (H1) if for each $n \in \mathbb{N}$, it holds

$$H(z^{(n+1)}) + a\Delta_n^2 \le H(z^{(n)});$$

(H2) if for each $n \in \mathbb{N}$, there exists $w^{(n+1)} \in \partial H(z^{(n+1)})$ with

$$||w^{(n+1)}||_2 \le \frac{b}{2}(\Delta_n + \Delta_{n+1});$$

Convergence – Requirements

Definition

Given a, b > 0. $H : \mathbb{R}^{2d} \to \mathbb{R}_{\infty}$ and a sequence $(z^{(n)})_{n \in \mathbb{N}} \subset \mathbb{R}^{2d}$ satisfy: (H1) if for each $n \in \mathbb{N}$, it holds

$$H(z^{(n+1)}) + a\Delta_n^2 \le H(z^{(n)});$$

(H2) if for each $n \in \mathbb{N}$, there exists $w^{(n+1)} \in \partial H(z^{(n+1)})$ with

$$||w^{(n+1)}||_2 \le \frac{b}{2}(\Delta_n + \Delta_{n+1});$$

(H3) if there exists a subsequence $(z^{(n_j)})_{j \in \mathbb{N}}$ with $z^{(n_j)} \to \tilde{z} = (\tilde{x}, \tilde{x})$ and $H(z^{(n_j)}) \to H(\tilde{z})$ for $j \to \infty$.

Convergence – Requirements, Condition (H1)

Lemma

 H_{δ_n} and $(z^{(n)})_{n \in \mathbb{N}}$ as generated by iPiano satisfy Condition (H1), in particular for each $n \in \mathbb{N}$ it holds

$$H_{\delta_{n+1}}(z^{(n+1)}) + \gamma_n \Delta_n^2 \le H_{\delta_n}(z^{(n)});$$

Convergence – Requirements, Condition (H1)

Lemma

 H_{δ_n} and $(z^{(n)})_{n \in \mathbb{N}}$ as generated by iPiano satisfy Condition (H1), in particular for each $n \in \mathbb{N}$ it holds

$$H_{\delta_{n+1}}(z^{(n+1)}) + \gamma_n \Delta_n^2 \le H_{\delta_n}(z^{(n)});$$

Proof Sketch.

Iteration (Equation (2)) \Rightarrow

$$w := \frac{x^{(n)} - x^{(n+1)}}{\alpha_n} - \nabla f(x^{(n)}) + \frac{\beta_n}{\alpha_n} (x^{(n)} - x^{(n-1)}) \in \partial g(x^{(n+1)})$$

Convergence – Requirements, Condition (H1)

Proof Sketch (cont'd).

With $w \in \partial g(x^{(n+1)})$, using the convexity of g,

$$g(x^{(n+1)}) \le g(x^{(n)}) - w^T(x^{(n)} - x^{(n-1)}),$$

and the L_n -Lipschitz continuity of ∇f ,

$$f(x^{(n+1)}) \le f(x^{(n)}) - +\nabla f(x^{(n)})^T (x^{(n+1)} - x^{(n)}) + \frac{L_n}{2} \|x^{(n)} - x^{(n+1)}\|_2^2;$$

it can be shown

$$h(x^{(n+1)}) \le h(x^{(n)}) - \delta_n \Delta_{n+1}^2 + \delta_n \Delta_n^2 - \gamma_n \Delta_n^2$$

which implies the claim as δ_n is monotonically decreasing.

Convergence – Requirements, Condition (H2)

Lemma

 H_{δ_n} and $(z^{(n)})_{n\in\mathbb{N}}$ as generated by iPiano satisfy Condition (H2), i.e. for each $n \in \mathbb{N}$ there exists $w^{(n+1)} \in \partial H_{\delta_{n+1}}(z^{(n+1)})$ such that $\|w^{(n+1)}\|_2 \leq \frac{7}{c_1}(\Delta_n + \Delta_{n+1}).$

Convergence – Requirements, Condition (H2)

Lemma

 H_{δ_n} and $(z^{(n)})_{n\in\mathbb{N}}$ as generated by iPiano satisfy Condition (H2), i.e. for each $n \in \mathbb{N}$ there exists $w^{(n+1)} \in \partial H_{\delta_{n+1}}(z^{(n+1)})$ such that $\|w^{(n+1)}\|_2 \leq \frac{7}{c_1}(\Delta_n + \Delta_{n+1}).$

Proof Sketch.

For
$$w^{(n+1)} \in \partial H_{\delta_{n+1}}(z^{(n+1)})$$
 it is $w^{(n+1)} = (w_1^{(n+1)}, w_2^{(n+1)})$ with
 $w_1^{(n+1)} \in \partial g(x^{(n+1)}) + \nabla f(x^{(n+1)}) + 2\delta_n(x^{(n+1)} - x^{(n)})$
 $w_2^{(n+1)} = -2\delta_n(x^{(n+1)} - x^{(n)})$

and

$$\|w^{(n+1)}\|_{2} \le \dots \le (\frac{1}{\alpha_{n}} + 4\delta_{n} + L_{n})\Delta_{n+1} + \frac{\beta_{n}}{\alpha_{n}}\Delta_{n} \le \frac{7}{c_{1}}(\Delta_{n+1} + \Delta_{n})$$

David Stutz | June 2, 2016

Convergence – Requirements, Condition (H3)

Lemma

 H_{δ_n} and $(z^{(n)})_{n\in\mathbb{N}}$ as generated by iPiano satisfy Condition (H1), i.e. there exists a subsequence $(z^{(n_j)})_{j\in\mathbb{N}}$ with $z^{(n_j)} \to \tilde{z} = (\tilde{x}, \tilde{x})$ and $H_{\delta_{n_j}}(z^{(n_j)}) \to H_{\delta}(\tilde{z})$ for $j \to \infty$.

Convergence – Requirements, Condition (H3)

Lemma

 H_{δ_n} and $(z^{(n)})_{n\in\mathbb{N}}$ as generated by iPiano satisfy Condition (H1), i.e. there exists a subsequence $(z^{(n_j)})_{j\in\mathbb{N}}$ with $z^{(n_j)} \to \tilde{z} = (\tilde{x}, \tilde{x})$ and $H_{\delta_{n_j}}(z^{(n_j)}) \to H_{\delta}(\tilde{z})$ for $j \to \infty$.

Proof Sketch.

Claim 1: by summing Condition (H1) and deducing $\sum_{n=0}^{\infty} \Delta_n^2 < \infty$ it can be shown that $\lim_{n\to\infty} \Delta_n = 0$.

Claim 2: from the coercivity of h and the Bolzano-Weierstrass theorem it follows the existence of a subsequence $(x^{(n_j)})_{j \in \mathbb{N}}$ with. Then:

$$\lim_{j \to \infty} H_{\delta_{n_j+1}}(x^{(n_j+1)}, x^{(n_j)}) = H_{\delta}(\tilde{x}, \tilde{x}) = h(\tilde{x}).$$

The Kurdyka-Lojasiewicz property is intended to relate the behavior of the subdifferential ∂H to the function values.

The Kurdyka-Lojasiewicz property is intended to relate the behavior of the subdifferential ∂H to the function values.

Definition (Informally)

For a point $\tilde{z} \in \text{dom}(\partial H)$, H is said to satisfy the Kurdyka-Lojasiewicz property if there exists a concave $\phi \in C^1$ with $\phi(0) = 0$ and $\phi' > 0$ such that

$$\phi'(H(z) - H(\tilde{z})) \inf_{\hat{z} \in \partial H(z)} \|\hat{z}\|_2 \ge 1$$

for all z in an appropriate neighborhood of \tilde{z} .

Intuitively, the inequality controls the difference in function values by the subdifferential.

David Stutz | June 2, 2016

The Kurdyka-Lojasiewicz property is intended to relate the behavior of the subdifferential ∂H to the function values.

Definition (Informally)

For a point $\tilde{z} \in \text{dom}(\partial H)$, H is said to satisfy the Kurdyka-Lojasiewicz property if there exists a concave $\phi \in C^1$ with $\phi(0) = 0$ and $\phi' > 0$ such that

$$\phi'(H(z) - H(\tilde{z})) \inf_{\hat{z} \in \partial H(z)} \|\hat{z}\|_2 \ge 1$$

for all z in an appropriate neighborhood of \tilde{z} .

Intuitively, the inequality controls the difference in function values by the subdifferential.

The Kurdyka-Lojasiewicz property is intended to relate the behavior of the subdifferential ∂H to the function values.

Definition (Informally)

For a point $\tilde{z} \in \text{dom}(\partial H)$, H is said to satisfy the Kurdyka-Lojasiewicz property if there exists a concave $\phi \in C^1$ with $\phi(0) = 0$ and $\phi' > 0$ such that

$$\phi'(H(z) - H(\tilde{z})) \inf_{\hat{z} \in \partial H(z)} \|\hat{z}\|_2 \ge 1$$

for all z in an appropriate neighborhood of \tilde{z} .

Intuitively, the inequality controls the difference in function values by the subdifferential.

David Stutz | June 2, 2016

Convergence – Convergence Theorem

Theorem

Let *H* be proper lower semicontinuous, satisfying the Kurdyka-Lojasiewicz property at $\tilde{z} = (\tilde{x}, \tilde{x})$ specified by Condition (H3), and $(z^{(n)})_{n \in \mathbb{N}}$, satisfying Conditions (H1) - (H3). Then $(x^{(n)})_{n \in \mathbb{N}}$ converges to \tilde{x} such that \tilde{z} is a critical point of *H*.

Convergence – Convergence Theorem

Theorem

Let *H* be proper lower semicontinuous, satisfying the Kurdyka-Lojasiewicz property at $\tilde{z} = (\tilde{x}, \tilde{x})$ specified by Condition (H3), and $(z^{(n)})_{n \in \mathbb{N}}$, satisfying Conditions (H1) - (H3). Then $(x^{(n)})_{n \in \mathbb{N}}$ converges to \tilde{x} such that \tilde{z} is a critical point of *H*.

It can further been shown that the convergence rate is $\mathcal{O}\left(1/\sqrt{n}\right)$ for the residual

$$r(x):=x-\mathsf{prox}_g(x-\nabla f(x))$$

in L_2 norm.

Convergence – Convergence Theorem (cont'd)

Proof Sketch.

The proof is based on the following claim:

$$\sum_{i=1}^{n} \Delta_{i} \leq \frac{1}{2} (\Delta_{0} - \Delta_{n}) + \frac{b}{a} \left[\phi(H(z^{(1)}) - H(\tilde{z})) - \phi(H(z^{(n+1)}) - H(\tilde{z})) \right]$$

which is shown by induction. Then, it follows $\sum_{n=0}^{\infty} \Delta_n < \infty$ and $x^{(n)} \to \tilde{x}$. Using the Kurdyka-Lojasiewicz property it can be shown that $H(z^{(n)}) \to H(\tilde{z})$. With Condition (H2) it also follows that \tilde{z} is a critical point of H.

Table of Contents

1 Problem

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Remember, derived bounds for α_0 and β_0 :

$$\begin{aligned} \alpha_0 &< \frac{2(1-\beta_0)}{L_0}; \\ \beta_0 &\leq \frac{b_0-1}{b_0-\frac{1}{2}} \quad \text{with} \quad b_0 := \frac{\delta_{-1}+\frac{L_n}{2}}{c_2+\frac{L_n}{2}} \end{aligned}$$

•

Guessing an appropriate β_0 is obviously easier than guessing δ_{-1} , so fix β_0 and estimate L_0 using

$$\frac{\|\nabla f(x^{(0)}) - \nabla f(\hat{x})\|_2}{\|x^{(0)} - \hat{x}\|_2} \le L_0$$

Remember, derived bounds for α_0 and β_0 :

$$\begin{aligned} \alpha_0 &< \frac{2(1-\beta_0)}{L_0}; \\ \beta_0 &\leq \frac{b_0 - 1}{b_0 - \frac{1}{2}} \quad \text{with} \quad b_0 := \frac{\delta_{-1} + \frac{L_n}{2}}{c_2 + \frac{L_n}{2}} \end{aligned}$$

•

Guessing an appropriate β_0 is obviously easier than guessing δ_{-1} , so fix β_0 and estimate L_0 using

$$\frac{\|\nabla f(x^{(0)}) - \nabla f(\hat{x})\|_2}{\|x^{(0)} - \hat{x}\|_2} \le L_0$$

Remember, derived bounds for α_0 and β_0 :

$$\begin{aligned} \alpha_0 &< \frac{2(1-\beta_0)}{L_0}; \\ \beta_0 &\leq \frac{b_0-1}{b_0-\frac{1}{2}} \quad \text{with} \quad b_0 := \frac{\delta_{-1}+\frac{L_n}{2}}{c_2+\frac{L_n}{2}}. \end{aligned}$$

Guessing an appropriate β_0 is obviously easier than guessing δ_{-1} , so fix β_0 and estimate L_0 using

$$\frac{\|\nabla f(x^{(0)}) - \nabla f(\hat{x})\|_2}{\|x^{(0)} - \hat{x}\|_2} \le L_0$$

Remember, derived bounds for α_0 and β_0 :

$$\begin{split} \alpha_0 &< \frac{2(1-\beta_0)}{L_0}; \\ \beta_0 &\leq \frac{b_0-1}{b_0-\frac{1}{2}} \quad \text{with} \quad b_0 := \frac{\delta_{-1}+\frac{L_n}{2}}{c_2+\frac{L_n}{2}} \end{split}$$

.

Guessing an appropriate β_0 is obviously easier than guessing δ_{-1} , so fix β_0 and estimate L_0 using

$$\frac{\|\nabla f(x^{(0)}) - \nabla f(\hat{x})\|_2}{\|x^{(0)} - \hat{x}\|_2} \le L_0$$

Implementation – Initialization (cont'd)

In practice, fix $K \gg 100$ and compute

$$\alpha_0^{(k)} := \alpha_0 - k \frac{a_0 - c_1}{K}$$
 with $a_0 := \frac{2(1 - \beta_0)}{(L_0 + 2c_2)}$ and $k = 1, \dots, K$

until $\alpha_0^{(k)}$ satisfies

$$\delta_0 := \frac{1}{\alpha_0^{(k)}} - \frac{L_0}{2} - \frac{\beta_0}{2\alpha_0^{(k)}} \ge \gamma_0 := \frac{1}{\alpha_0^{(k)}} - \frac{L_0}{2} - \frac{\beta_0}{\alpha_0^{(k)}} \ge c_2.$$

Implementation – Initialization (cont'd)

In practice, fix $K\gg 100$ and compute

$$\alpha_0^{(k)} := \alpha_0 - k \frac{a_0 - c_1}{K}$$
 with $a_0 := \frac{2(1 - \beta_0)}{(L_0 + 2c_2)}$ and $k = 1, \dots, K$

until $\alpha_0^{(k)}$ satisfies

$$\delta_0 := \frac{1}{\alpha_0^{(k)}} - \frac{L_0}{2} - \frac{\beta_0}{2\alpha_0^{(k)}} \ge \gamma_0 := \frac{1}{\alpha_0^{(k)}} - \frac{L_0}{2} - \frac{\beta_0}{\alpha_0^{(k)}} \ge c_2.$$

Implementation – Initialization (cont'd)

In practice, fix $K \gg 100$ and compute

$$\alpha_0^{(k)} := \alpha_0 - k \frac{a_0 - c_1}{K}$$
 with $a_0 := \frac{2(1 - \beta_0)}{(L_0 + 2c_2)}$ and $k = 1, \dots, K$

until $\alpha_0^{(k)}$ satisfies

$$\delta_0 := \frac{1}{\alpha_0^{(k)}} - \frac{L_0}{2} - \frac{\beta_0}{2\alpha_0^{(k)}} \ge \gamma_0 := \frac{1}{\alpha_0^{(k)}} - \frac{L_0}{2} - \frac{\beta_0}{\alpha_0^{(k)}} \ge c_2.$$

Given L_{n-1} and $\eta > 1$, find the smallest $l \in \mathbb{N}$ such that

$$L_n := \eta^l L_{n-1} \tag{4}$$

satisfies

$$f(x^{(n+1)}) \le f(x^{(n)}) + \nabla f(x^{(n)})^T (x^{(n+1)} - x^{(n)}) + \frac{L_n}{2} \|x^{(n+1)} - x^{(n)}\|_2^2.$$

Alternatively, instead of L_{n-1} , use

$$\frac{\|\nabla f(x^{(n-1)}) - \nabla f(\hat{x})\|_2}{\|x^{(n-1)} - \hat{x}\|_2} \le L_n$$

with $\hat{x} = \text{prox}_g(x^{(n-1)} - \nabla f(x^{(n-1)}))$ as starting point for Equation (4).

David Stutz | June 2, 2016

Given L_{n-1} and $\eta > 1$, find the smallest $l \in \mathbb{N}$ such that

$$L_n := \eta^l L_{n-1} \tag{4}$$

satisfies

$$f(x^{(n+1)}) \le f(x^{(n)}) + \nabla f(x^{(n)})^T (x^{(n+1)} - x^{(n)}) + \frac{L_n}{2} \|x^{(n+1)} - x^{(n)}\|_2^2.$$

Alternatively, instead of L_{n-1} , use

$$\frac{\|\nabla f(x^{(n-1)}) - \nabla f(\hat{x})\|_2}{\|x^{(n-1)} - \hat{x}\|_2} \le L_n$$

with $\hat{x} = \text{prox}_g(x^{(n-1)} - \nabla f(x^{(n-1)}))$ as starting point for Equation (4).

David Stutz | June 2, 2016

Given L_{n-1} and $\eta > 1$, find the smallest $l \in \mathbb{N}$ such that

$$L_n := \eta^l L_{n-1} \tag{4}$$

satisfies

$$f(x^{(n+1)}) \le f(x^{(n)}) + \nabla f(x^{(n)})^T (x^{(n+1)} - x^{(n)}) + \frac{L_n}{2} \|x^{(n+1)} - x^{(n)}\|_2^2.$$

Alternatively, instead of L_{n-1} , use

$$\frac{\|\nabla f(x^{(n-1)}) - \nabla f(\hat{x})\|_2}{\|x^{(n-1)} - \hat{x}\|_2} \le L_n$$

with $\hat{x} = \text{prox}_g(x^{(n-1)} - \nabla f(x^{(n-1)}))$ as starting point for Equation (4).

Given L_{n-1} and $\eta > 1$, find the smallest $l \in \mathbb{N}$ such that

$$L_n := \eta^l L_{n-1} \tag{4}$$

satisfies

$$f(x^{(n+1)}) \le f(x^{(n)}) + \nabla f(x^{(n)})^T (x^{(n+1)} - x^{(n)}) + \frac{L_n}{2} \|x^{(n+1)} - x^{(n)}\|_2^2.$$

Alternatively, instead of L_{n-1} , use

$$\frac{\|\nabla f(x^{(n-1)}) - \nabla f(\hat{x})\|_2}{\|x^{(n-1)} - \hat{x}\|_2} \le L_n$$

with $\hat{x} = \text{prox}_g(x^{(n-1)} - \nabla f(x^{(n-1)}))$ as starting point for Equation (4).

David Stutz | June 2, 2016

Similar to initialization, fix $J, K \gg 100$ and compute

$$\beta_n^{(j)} := \frac{b_n - 1}{b_n - \frac{1}{2}} - \frac{j}{J} \frac{b_n - 1}{b_n - \frac{1}{2}} \quad \text{with} \quad b_n := \frac{\delta_{n-1} + \frac{L_n}{2}}{c_2 + \frac{L_n}{2}} \text{ and } j = 0, \dots, J,$$
$$\alpha_n^{(k)} := a_n - k \frac{a_n - c_1}{K} \quad \text{with} \quad a_n := \frac{2(1 - \beta_n)}{(L_n + 2c_2)} \text{ and } k = 1, \dots, K$$

until $\beta_n^{(j)}$ and $\alpha_n^{(k)}$ satisfy

$$\delta_n := \frac{1}{\alpha_n^{(k)}} - \frac{L_n}{2} - \frac{\beta_n^{(j)}}{2\alpha_n^{(k)}} \ge \gamma_n := \frac{1}{\alpha_n^{(k)}} - \frac{L_n}{2} - \frac{\beta_n^{(j)}}{\alpha_n^{(k)}} \ge c_2$$

$$\delta_n \le \delta_{n-1}.$$

Similar to initialization, fix $J, K \gg 100$ and compute

$$\beta_n^{(j)} := \frac{b_n - 1}{b_n - \frac{1}{2}} - \frac{j}{J} \frac{b_n - 1}{b_n - \frac{1}{2}} \quad \text{with} \quad b_n := \frac{\delta_{n-1} + \frac{L_n}{2}}{c_2 + \frac{L_n}{2}} \text{ and } j = 0, \dots, J,$$
$$\alpha_n^{(k)} := a_n - k \frac{a_n - c_1}{K} \quad \text{with} \quad a_n := \frac{2(1 - \beta_n)}{(L_n + 2c_2)} \text{ and } k = 1, \dots, K$$

until $\beta_n^{(j)}$ and $\alpha_n^{(k)}$ satisfy

$$\delta_n := \frac{1}{\alpha_n^{(k)}} - \frac{L_n}{2} - \frac{\beta_n^{(j)}}{2\alpha_n^{(k)}} \ge \gamma_n := \frac{1}{\alpha_n^{(k)}} - \frac{L_n}{2} - \frac{\beta_n^{(j)}}{\alpha_n^{(k)}} \ge c_2$$

$$\delta_n \le \delta_{n-1}.$$

Similar to initialization, fix $J, K \gg 100$ and compute

$$\beta_n^{(j)} := \frac{b_n - 1}{b_n - \frac{1}{2}} - \frac{j}{J} \frac{b_n - 1}{b_n - \frac{1}{2}} \quad \text{with} \quad b_n := \frac{\delta_{n-1} + \frac{L_n}{2}}{c_2 + \frac{L_n}{2}} \text{ and } j = 0, \dots, J,$$
$$\alpha_n^{(k)} := a_n - k \frac{a_n - c_1}{K} \quad \text{with} \quad a_n := \frac{2(1 - \beta_n)}{(L_n + 2c_2)} \text{ and } k = 1, \dots, K$$

until $\beta_n^{(j)}$ and $\alpha_n^{(k)}$ satisfy

$$\delta_n := \frac{1}{\alpha_n^{(k)}} - \frac{L_n}{2} - \frac{\beta_n^{(j)}}{2\alpha_n^{(k)}} \ge \gamma_n := \frac{1}{\alpha_n^{(k)}} - \frac{L_n}{2} - \frac{\beta_n^{(j)}}{\alpha_n^{(k)}} \ge c_2$$

$$\delta_n \le \delta_{n-1}.$$

Similar to initialization, fix $J, K \gg 100$ and compute

$$\beta_n^{(j)} := \frac{b_n - 1}{b_n - \frac{1}{2}} - \frac{j}{J} \frac{b_n - 1}{b_n - \frac{1}{2}} \quad \text{with} \quad b_n := \frac{\delta_{n-1} + \frac{L_n}{2}}{c_2 + \frac{L_n}{2}} \text{ and } j = 0, \dots, J,$$
$$\alpha_n^{(k)} := a_n - k \frac{a_n - c_1}{K} \quad \text{with} \quad a_n := \frac{2(1 - \beta_n)}{(L_n + 2c_2)} \text{ and } k = 1, \dots, K$$

until $\beta_n^{(j)}$ and $\alpha_n^{(k)}$ satisfy

$$\delta_n := \frac{1}{\alpha_n^{(k)}} - \frac{L_n}{2} - \frac{\beta_n^{(j)}}{2\alpha_n^{(k)}} \ge \gamma_n := \frac{1}{\alpha_n^{(k)}} - \frac{L_n}{2} - \frac{\beta_n^{(j)}}{\alpha_n^{(k)}} \ge c_2$$

$$\delta_n \le \delta_{n-1}.$$

Table of Contents

1 Problem

- 3 Algorithm
- 4 Convergence
- **5** Implementation

6 Applications

Given a noisy image $u^{(0)}: \Omega = [0,1]^2 \rightarrow [0,1]$, minimize

$$h(u; u^{(0)}, \lambda) = \int_{\Omega} \rho_1(u(x) - u^{(0)}(x)) dx + \lambda \int_{\Omega} \rho_2(\|\nabla u(x)\|_2) dx$$

with

$$\begin{split} \rho_{1,\mathrm{abs}} &= |x| \text{ and } \rho_{1,\mathrm{sqr}}(x) = x^2;\\ \rho_2(x) &= \log\left(1 + \frac{x^2}{\sigma^2}\right). \end{split}$$

Given a noisy image $u^{(0)}: \Omega = [0,1]^2 \rightarrow [0,1]$, minimize

$$h(u; u^{(0)}, \lambda) = \int_{\Omega} \rho_1(u(x) - u^{(0)}(x)) dx + \lambda \int_{\Omega} \rho_2(\|\nabla u(x)\|_2) dx$$

with

$$\begin{split} \rho_{1,\mathrm{abs}} &= |x| \text{ and } \rho_{1,\mathrm{sqr}}(x) = x^2;\\ \rho_2(x) &= \log\left(1 + \frac{x^2}{\sigma^2}\right). \end{split}$$

Given a noisy image $u^{(0)}: \Omega = [0,1]^2 \rightarrow [0,1]$, minimize

$$h(u; u^{(0)}, \lambda) = \int_{\Omega} \rho_1(u(x) - u^{(0)}(x)) dx + \lambda \int_{\Omega} \rho_2(\|\nabla u(x)\|_2) dx$$

with

$$\begin{split} \rho_{1,\mathrm{abs}} &= |x| \text{ and } \rho_{1,\mathrm{sqr}}(x) = x^2;\\ \rho_2(x) &= \log\left(1 + \frac{x^2}{\sigma^2}\right). \end{split}$$

Given a noisy image $u^{(0)}: \Omega = [0,1]^2 \rightarrow [0,1],$ minimize

$$h(u; u^{(0)}, \lambda) = \int_{\Omega} \rho_1(u(x) - u^{(0)}(x)) dx + \lambda \int_{\Omega} \rho_2(\|\nabla u(x)\|_2) dx$$

with

$$\begin{split} \rho_{1,\mathrm{abs}} &= |x| \text{ and } \rho_{1,\mathrm{sqr}}(x) = x^2;\\ \rho_2(x) &= \log\left(1 + \frac{x^2}{\sigma^2}\right). \end{split}$$

 $ho_{1,sqr}$ and ho_2 are differentiable; the proximal mapping of $ho_{1,abs}(x-x^{(0)})$ is

$$\operatorname{prox}_{\alpha\rho_{1,\operatorname{abs}}}(x) = \max(0, |x| - \alpha) \cdot \operatorname{sign}(x) - x^{(0)}.$$

Denoising – Results

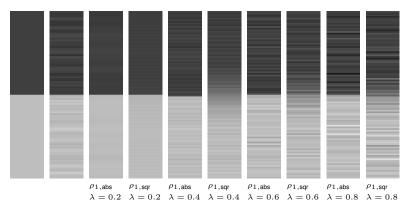


Figure: Signal denoising experiment; input signal shown on the left with the perturbed/noisy signal on its right. Results using $\rho_{1,abs}$ and $\rho_{1,sqr}$ with $\lambda \in \{0.2, 0.4, 0.6, 0.8\}$ are shown.

Denoising – Convergence

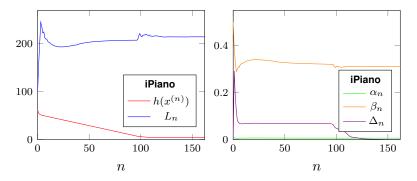


Figure: Convergence of iPiano. Shown is the value of the objective function h(x(n)) for each iterate x(n), $n \ge 0$, as well as the corresponding parameters α_n , β_n and L_n . Furthermore, $\Delta_n := \|x^{(n)} - x^{(n-1)}\|_2$ is shown.

Denoising – Results (cont'd)

Figure: Image denoising experiment; noisy image in the top row, $\rho_{1,abs}$ in the middle row and $\rho_{1,sar}$ in the bottom row.

Binary Segmentation – Model

Binary segmentation based on an approximation of the Mumford-Shah model [MS89, She05]; $u: [0,1]^2 \rightarrow [-1,1]$:

$$h_{\epsilon}(u; c_{+}, c_{-}, u^{(0)}, \lambda) = \int_{\Omega} \left(9\epsilon \|\nabla u(x)\|_{2}^{2} + \frac{(1 - u(x)^{2})^{2}}{64\epsilon} \right) dx$$
$$+ \lambda \int_{\Omega} \left(\frac{1 + u(x)}{2} \right)^{2} (u^{(0)}(x) - c_{+})^{2} dx$$
$$+ \lambda \int_{\Omega} \left(\frac{1 - u(x)}{2} \right)^{2} (u^{(0)}(x) - c_{-})^{2} dx.$$

Binary Segmentation – Model

Binary segmentation based on an approximation of the Mumford-Shah model [MS89, She05]; $u: [0,1]^2 \rightarrow [-1,1]$:

$$h_{\epsilon}(u; c_{+}, c_{-}, u^{(0)}, \lambda) = \int_{\Omega} \left(9\epsilon \|\nabla u(x)\|_{2}^{2} + \frac{(1 - u(x)^{2})^{2}}{64\epsilon} \right) dx$$
$$+ \lambda \int_{\Omega} \left(\frac{1 + u(x)}{2} \right)^{2} (u^{(0)}(x) - c_{+})^{2} dx$$
$$+ \lambda \int_{\Omega} \left(\frac{1 - u(x)}{2} \right)^{2} (u^{(0)}(x) - c_{-})^{2} dx.$$

(It can be shown, that for $\epsilon \to 0$,

$$\int_{\Omega} \left(9\epsilon \|\nabla u(x)\|_2^2 + \frac{(1-u(x)^2)^2}{64\epsilon} \right) dx$$

approximates $|u|_{BV}$.)

David Stutz | June 2, 2016

Binary Segmentation – Model

Binary segmentation based on an approximation of the Mumford-Shah model [MS89, She05]; $u: [0,1]^2 \rightarrow [-1,1]$:

$$h_{\epsilon}(u; c_{+}, c_{-}, u^{(0)}, \lambda) = \int_{\Omega} \left(9\epsilon \|\nabla u(x)\|_{2}^{2} + \frac{(1 - u(x)^{2})^{2}}{64\epsilon} \right) dx$$
$$+ \lambda \int_{\Omega} \left(\frac{1 + u(x)}{2} \right)^{2} (u^{(0)}(x) - c_{+})^{2} dx$$
$$+ \lambda \int_{\Omega} \left(\frac{1 - u(x)}{2} \right)^{2} (u^{(0)}(x) - c_{-})^{2} dx.$$

(It can be shown, that for $\epsilon \to 0$,

$$\int_{\Omega} \left(9\epsilon \|\nabla u(x)\|_2^2 + \frac{(1-u(x)^2)^2}{64\epsilon} \right) dx$$

approximates $|u|_{BV}$.)

David Stutz | June 2, 2016

Binary Segmentation – Results (cont'd)

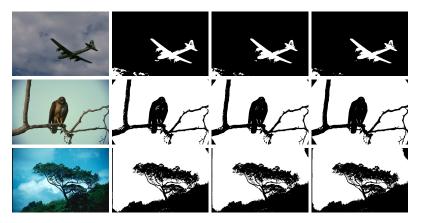


Figure: Segmentation results for thresholds $\tau = -0.2, 0.0, 0.2$ and using g_{sqr} ; the foreground segment S_f is depicted in white.

Table of Contents

1 Problem

- 3 Algorithm
- 4 Convergence
- 5 Implementation
- 6 Applications

Conclusion

We discussed the minimization of composite functions of the form

$$\min_{x \in \mathbb{R}^d} h(x) = \min_{n \in \mathbb{R}^d} (f(x) + g(x)).$$

Conclusion

We discussed the minimization of composite functions of the form

$$\min_{x \in \mathbb{R}^d} h(x) = \min_{n \in \mathbb{R}^d} (f(x) + g(x)).$$

Ochs et al. [OCBP14] proposed the iPiano algorithm to solve this problem under to following requirements:

- g proper closed convex and lower semi continuous;
- $f \in C^1$ with L-Lipschitz continuous ∇f ;
- -h coercive and bounded below;
- and $H_{\delta_n}(x^{(n)}, x^{(n-1)}) = h(x^{(n)}) + \delta_n \Delta_n$ satisfying the Kurdyka-Lojasiewicz property [Loj93, Kur98] at a critical point.

Conclusion

We discussed the minimization of composite functions of the form

$$\min_{x \in \mathbb{R}^d} h(x) = \min_{n \in \mathbb{R}^d} (f(x) + g(x)).$$

Ochs et al. [OCBP14] proposed the iPiano algorithm to solve this problem under to following requirements:

- g proper closed convex and lower semi continuous;
- $f \in C^1$ with L-Lipschitz continuous ∇f ;
- -h coercive and bounded below;
- and $H_{\delta_n}(x^{(n)}, x^{(n-1)}) = h(x^{(n)}) + \delta_n \Delta_n$ satisfying the Kurdyka-Lojasiewicz property [Loj93, Kur98] at a critical point.

The algorithm can be implemented efficiently in C++ and used to solve image processing tasks.

Appendix – Kurdyka-Lojasiewicz Property

Definition

H has the Kurdyka-Lojasiewicz property at point $\tilde{z} \in \text{dom}(\partial H)$ there exist $\eta \in (0, \infty]$, a neighborhood U of \tilde{z} , and a continuous concave function $\phi : [0, \eta) \to \mathbb{R}_+$ such that

- $-\phi \in C^1((0,\eta)), \phi(0) = 0$, and for all $s \in (0,\eta), \phi'(s) > 0$;
- and for all $z \in U \cap \{z \in \mathbb{R}^{2d} | H(\tilde{z}) < H(z) < H(\tilde{z}) + \eta\}$ the Kurdyka-Lojasiewicz inequality holds:

$$\phi'(H(z) - H(\tilde{z})) \inf_{\hat{z} \in \partial H(z)} \|\hat{z}\|_2 \ge 1.$$

Appendix – Kurdyka-Lojasiewicz Property

Definition

H has the Kurdyka-Lojasiewicz property at point $\tilde{z} \in \text{dom}(\partial H)$ there exist $\eta \in (0, \infty]$, a neighborhood *U* of \tilde{z} , and a continuous concave function $\phi : [0, \eta) \to \mathbb{R}_+$ such that

- $-\phi \in C^1((0,\eta)), \phi(0) = 0$, and for all $s \in (0,\eta), \phi'(s) > 0$;
- and for all $z \in U \cap \{z \in \mathbb{R}^{2d} | H(\tilde{z}) < H(z) < H(\tilde{z}) + \eta\}$ the Kurdyka-Lojasiewicz inequality holds:

$$\phi'(H(z) - H(\tilde{z})) \inf_{\hat{z} \in \partial H(z)} \|\hat{z}\|_2 \ge 1.$$

Intuitively, for $H \in C^1$, this means that ϕ has to be steep around critical points \tilde{z} of H where ∇H is flat.

Krzysztof Kurdyka.

On gradients of functions definable in o-minimal structures. *Annales de l'institut Fourier*, 48(3):769–783, 1998.

Stanislas Lojasiewicz.

Sur la géométrie semi- et sous- analytique. Annales de l'institut Fourier, 43(5):1575–1595, 1993.

David Mumford and Jayant Shah.

Optimal approximations by piecewise smooth functions and associated variational problems.

Comm. on Pure and Applied Mathematics, 42(5):577–685, 1989.

Peter Ochs, Yunjin Chen, Thomas Brox, and Thomas Pock. ipiano: Inertial proximal algorithm for nonconvex optimization. *SIAM J. Imaging Sciences*, 7(2):1388–1419, 2014.

Jianhong Shen.

Gamma-convergence approximation to piecewise constant mumford-shah segmentation.

In Advanced Concepts for Intelligent Vision Systems, International Conference on, volume 3708 of Lecture Notes in Computer Science, pages 499–506, Antwerpen, Belgium, September 2005. Springer.