iPiano: Inertial Proximal Algorithm for Non-Convex Optimization

David Stutz

June 2, 2016

Table of Contents

(1) Problem

(2) Related Work
(3) Algorithm
4. Convergence
(5) Implementation

6 Applications
(7) Conclusion

Problem

Problem. Minimize composite function

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} h(x)=\min _{n \in \mathbb{R}^{d}}(f(x)+g(x)) \tag{1}
\end{equation*}
$$

where

Problem

Problem. Minimize composite function

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} h(x)=\min _{n \in \mathbb{R}^{d}}(f(x)+g(x)) \tag{1}
\end{equation*}
$$

where

- $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \in C^{1}$ with L-Lipschitz continuous gradient;

Problem

Problem. Minimize composite function

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} h(x)=\min _{n \in \mathbb{R}^{d}}(f(x)+g(x)) \tag{1}
\end{equation*}
$$

where

- $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \in C^{1}$ with L-Lipschitz continuous gradient;
- $g: \operatorname{dom}(g) \subset \mathbb{R}^{d} \rightarrow \mathbb{R}_{\infty}$ is proper closed convex and lower semicontinuous;

Problem

Problem. Minimize composite function

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} h(x)=\min _{n \in \mathbb{R}^{d}}(f(x)+g(x)) \tag{1}
\end{equation*}
$$

where

- $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \in C^{1}$ with L-Lipschitz continuous gradient;
- $g: \operatorname{dom}(g) \subset \mathbb{R}^{d} \rightarrow \mathbb{R}_{\infty}$ is proper closed convex and lower semicontinuous;
- and h coercive and bounded below by

$$
-\infty<h_{\min }:=\inf _{x \in \mathbb{R}^{d}} h(x)
$$

Problem

Problem. Minimize composite function

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} h(x)=\min _{n \in \mathbb{R}^{d}}(f(x)+g(x)) \tag{1}
\end{equation*}
$$

where

- $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \in C^{1}$ with L-Lipschitz continuous gradient;
- $g: \operatorname{dom}(g) \subset \mathbb{R}^{d} \rightarrow \mathbb{R}_{\infty}$ is proper closed convex and lower semicontinuous;
- and h coercive and bounded below by

$$
-\infty<h_{\min }:=\inf _{x \in \mathbb{R}^{d}} h(x)
$$

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term to solve Equation (1) iteratively.

Table of Contents

(1) Problem
(2) Related Work
(3) Algorithm
(4) Convergence
(5) Implementation

6 Applications
(7) Conclusion

Related Work

Gradient descent for $h \in C^{1}$:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)
$$

Gradient descent with inertial force/momentum term:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right) .
$$

Proximal point for h being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} h}\left(x^{(n)}\right) .
$$

Forward-backward splitting for $h=f+g$ with $f \in C^{1}$ and f, g being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)\right)
$$

Related Work

Gradient descent for $h \in C^{1}$:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)
$$

Gradient descent with inertial force/momentum term:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)
$$

Proximal point for h being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} h}\left(x^{(n)}\right)
$$

Forward-backward splitting for $h=f+g$ with $f \in C^{1}$ and f, g being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)\right)
$$

Related Work

Gradient descent for $h \in C^{1}$:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)
$$

Gradient descent with inertial force/momentum term:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)
$$

Proximal point for h being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} h}\left(x^{(n)}\right)
$$

Forward-backward splitting for $h=f+g$ with $f \in C^{1}$ and f, g being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)\right)
$$

Related Work

Gradient descent for $h \in C^{1}$:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)
$$

Gradient descent with inertial force/momentum term:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)
$$

Proximal point for h being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} h}\left(x^{(n)}\right)
$$

Forward-backward splitting for $h=f+g$ with $f \in C^{1}$ and f, g being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)\right)
$$

Related Work

Gradient descent for $h \in C^{1}$:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)
$$

Gradient descent with inertial force/momentum term:

$$
x^{(n+1)}=x^{(n)}-\alpha_{n} \nabla h\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)
$$

Proximal point for h being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} h}\left(x^{(n)}\right)
$$

Forward-backward splitting for $h=f+g$ with $f \in C^{1}$ and f, g being proper closed convex:

$$
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)\right)
$$

Table of Contents

(1) Problem
(2) Related Work
(3) Algorithm
(4) Convergence
(5) Implementation

6 Applications
(7) Conclusion

Algorithm - Iterates and Backtracking

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term.

Algorithm - Iterates and Backtracking

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term:

$$
\begin{equation*}
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)\right) \tag{2}
\end{equation*}
$$

with step size parameters $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and momentum parameters $\left(\beta_{n}\right)_{n \in \mathbb{N}}$.

Algorithm - Iterates and Backtracking

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term

$$
\begin{equation*}
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)\right) \tag{2}
\end{equation*}
$$

with step size parameters $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and momentum parameters $\left(\beta_{n}\right)_{n \in \mathbb{N}}$.
Backtracking to estimate the local Lipschitz constant L_{n} such that

$$
\begin{align*}
f\left(x^{(n+1)}\right) \leq f\left(x^{(n)}\right) & +\nabla f\left(x^{(n)}\right)^{T}\left(x^{(n+1)}-x^{(n)}\right) \\
& +\frac{L_{n}}{2}\left\|x^{(n+1)}-x^{(n)}\right\|_{2}^{2} \tag{3}
\end{align*}
$$

Algorithm - Iterates and Backtracking

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial force/momentum term

$$
\begin{equation*}
x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)\right) \tag{2}
\end{equation*}
$$

with step size parameters $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and momentum parameters $\left(\beta_{n}\right)_{n \in \mathbb{N}}$.
Backtracking to estimate the local Lipschitz constant L_{n} such that

$$
\begin{align*}
f\left(x^{(n+1)}\right) \leq f\left(x^{(n)}\right) & +\nabla f\left(x^{(n)}\right)^{T}\left(x^{(n+1)}-x^{(n)}\right) \\
& +\frac{L_{n}}{2}\left\|x^{(n+1)}-x^{(n)}\right\|_{2}^{2} \tag{3}
\end{align*}
$$

Algorithm - iPiano

Algorithm iPiano.

```
1: choose \(c_{1}, c_{2}>0\) close to zero, \(L_{-1}>0, \eta>1, x^{(0)}\)
2: \(x^{(-1)}:=x^{(0)}\)
    3: for \(n=1, \ldots\) do
    4:
    5:
    6:
    7:
    8: choose \(\alpha_{n} \geq c_{1}, \beta_{n} \geq 0\)
    9:
    10: \(\quad x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)\right)\)
```

11:
12: end for

Algorithm - iPiano

Algorithm iPiano.

1: choose $c_{1}, c_{2}>0$ close to zero, $L_{-1}>0, \eta>1, x^{(0)}$
2: $x^{(-1)}:=x^{(0)}$
3: for $n=1, \ldots$ do
4:
5:
6:
7: repeat
8: \quad choose $\alpha_{n} \geq c_{1}, \beta_{n} \geq 0$
9: until $\delta_{n}:=\frac{1}{\alpha_{n}}-\frac{L_{n}}{2}-\frac{\beta_{n}}{2 \alpha_{n}} \geq \gamma_{n}:=\frac{1}{\alpha_{n}}-\frac{L_{n}}{2}-\frac{\beta_{n}}{\alpha_{n}} \geq c_{2}$
10: $\quad x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)\right)$
11:
12: end for

Algorithm - iPiano

Algorithm iPiano.

1: choose $c_{1}, c_{2}>0$ close to zero, $L_{-1}>0, \eta>1, x^{(0)}$
2: $x^{(-1)}:=x^{(0)}$
3: for $n=1, \ldots$ do
4: $\quad L_{n}:=\frac{1}{\eta} L_{n-1}$
5: repeat

$$
\text { 6: } \quad L_{n}:=\eta L_{n}
$$

7: repeat
8: \quad choose $\alpha_{n} \geq c_{1}, \beta_{n} \geq 0$
9: until $\delta_{n}:=\frac{1}{\alpha_{n}}-\frac{L_{n}}{2}-\frac{\beta_{n}}{2 \alpha_{n}} \geq \gamma_{n}:=\frac{1}{\alpha_{n}}-\frac{L_{n}}{2}-\frac{\beta_{n}}{\alpha_{n}} \geq c_{2}$
10: $\quad x^{(n+1)}=\operatorname{prox}_{\alpha_{n} g}\left(x^{(n)}-\alpha_{n} \nabla f\left(x^{(n)}\right)+\beta_{n}\left(x^{(n)}-x^{(n-1)}\right)\right)$
11: until (3) is satisifed for $x^{(n+1)}$
12: end for

Algorithm - Monotonically Decreasing δ_{n}

Lemma

For each $n \in \mathbb{N}$, given $L_{n}>0$, there exist $\alpha_{n}<2\left(1-\beta_{n}\right) / L_{n}$ and $0 \leq \beta_{n}<1$ as in iPiano such that $c_{2} \leq \gamma_{n} \leq \delta_{n}$ and $\left(\delta_{n}\right)_{n \in \mathbb{N}}$ is monotonically decreasing.

Algorithm - Monotonically Decreasing δ_{n}

Lemma

For each $n \in \mathbb{N}$, given $L_{n}>0$, there exist $\alpha_{n}<2\left(1-\beta_{n}\right) / L_{n}$ and $0 \leq \beta_{n}<1$ as in iPiano such that $c_{2} \leq \gamma_{n} \leq \delta_{n}$ and $\left(\delta_{n}\right)_{n \in \mathbb{N}}$ is monotonically decreasing.

Proof Sketch.

With $b_{n}:=\left(\delta_{n-1}+\frac{L_{n}}{2}\right) /\left(c_{2}+\frac{L_{n}}{2}\right)$:

$$
\begin{aligned}
\gamma_{n} & \geq c_{2}
\end{aligned} \Leftrightarrow \alpha_{n} \leq \frac{1-\beta_{n}}{c_{2}+\frac{L_{n}}{2}}<\frac{2\left(1-\beta_{n}\right)}{L_{n}}, ~ \begin{aligned}
\delta_{n-1} & \geq \delta_{n}
\end{aligned} \Leftrightarrow \frac{1-\beta_{n}}{c_{2}+\frac{L_{n}}{2}} \geq \alpha_{n} \geq \frac{1-\frac{\beta_{n}}{2}}{\delta_{n-1}+\frac{L_{n}}{2}} \Rightarrow \beta_{n} \leq \frac{b_{n}-1}{b_{n}-\frac{1}{2}} .
$$

Table of Contents

(1) Problem
(2) Related Work
(3) Algorithm
(4) Convergence
(5) Implementation

6 Applications
(7) Conclusion

Convergence - Overview

Convergence analysis is based on three requirements regarding

$$
\begin{aligned}
H_{\delta_{n+1}}\left(x^{(n+1)}, x^{(n)}\right) & :=h\left(x^{(n+1)}\right)+\delta_{n+1} \underbrace{\left\|x^{(n)}-x^{(n-1)}\right\|_{2}^{2}}_{\Delta_{n+1}^{2}} \\
& :=h\left(x^{(n+1)}\right)+\delta_{n+1}
\end{aligned}
$$

and the sequence

$$
\left(z^{(n+1)}\right)_{n \in \mathbb{N}}:=\left(x^{(n+1)}, x^{(n)}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{2 d}
$$

generated by iPiano.

Convergence - Overview

Convergence analysis is based on three requirements regarding

$$
\begin{aligned}
H_{\delta_{n+1}}\left(x^{(n+1)}, x^{(n)}\right) & :=h\left(x^{(n+1)}\right)+\delta_{n+1} \underbrace{\left\|x^{(n)}-x^{(n-1)}\right\|_{2}^{2}}_{\Delta_{n+1}^{2}} \\
& :=h\left(x^{(n+1)}\right)+\delta_{n+1}
\end{aligned}
$$

and the sequence

$$
\left(z^{(n+1)}\right)_{n \in \mathbb{N}}:=\left(x^{(n+1)}, x^{(n)}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{2 d}
$$

generated by iPiano.

Convergence - Overview

Convergence analysis is based on three requirements regarding

$$
\begin{aligned}
H_{\delta_{n+1}}\left(x^{(n+1)}, x^{(n)}\right) & :=h\left(x^{(n+1)}\right)+\delta_{n+1} \underbrace{\left\|x^{(n)}-x^{(n-1)}\right\|_{2}^{2}}_{\Delta_{n+1}^{2}} \\
& :=h\left(x^{(n+1)}\right)+\delta_{n+1}
\end{aligned}
$$

and the sequence

$$
\left(z^{(n+1)}\right)_{n \in \mathbb{N}}:=\left(x^{(n+1)}, x^{(n)}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{2 d}
$$

generated by iPiano.

Convergence - Overview

Convergence analysis is based on three requirements regarding

$$
\begin{aligned}
H_{\delta_{n+1}}\left(x^{(n+1)}, x^{(n)}\right) & :=h\left(x^{(n+1)}\right)+\delta_{n+1} \underbrace{\left\|x^{(n)}-x^{(n-1)}\right\|_{2}^{2}}_{\Delta_{n+1}^{2}} \\
& :=h\left(x^{(n+1)}\right)+\delta_{n+1}
\end{aligned}
$$

and the sequence

$$
\left(z^{(n+1)}\right)_{n \in \mathbb{N}}:=\left(x^{(n+1)}, x^{(n)}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{2 d}
$$

generated by iPiano.
Furthermore, $H_{\delta_{n}}$ is required to satisfy the Kurdyka-Lojasiewicz property [Loj93, Kur98] at a critical point \tilde{z} of $H_{\delta_{n}}$.

Convergence - Requirements

Definition

Given $a, b>0$. $H: \mathbb{R}^{2 d} \rightarrow \mathbb{R}_{\infty}$ and a sequence $\left(z^{(n)}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{2 d}$ satisfy:
(H1) if for each $n \in \mathbb{N}$, it holds

$$
H\left(z^{(n+1)}\right)+a \Delta_{n}^{2} \leq H\left(z^{(n)}\right)
$$

Convergence - Requirements

Definition

Given $a, b>0$. $H: \mathbb{R}^{2 d} \rightarrow \mathbb{R}_{\infty}$ and a sequence $\left(z^{(n)}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{2 d}$ satisfy:
(H1) if for each $n \in \mathbb{N}$, it holds

$$
H\left(z^{(n+1)}\right)+a \Delta_{n}^{2} \leq H\left(z^{(n)}\right) ;
$$

(H2) if for each $n \in \mathbb{N}$, there exists $w^{(n+1)} \in \partial H\left(z^{(n+1)}\right)$ with

$$
\left\|w^{(n+1)}\right\|_{2} \leq \frac{b}{2}\left(\Delta_{n}+\Delta_{n+1}\right)
$$

Convergence - Requirements

Definition

Given $a, b>0$. $H: \mathbb{R}^{2 d} \rightarrow \mathbb{R}_{\infty}$ and a sequence $\left(z^{(n)}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{2 d}$ satisfy:
(H1) if for each $n \in \mathbb{N}$, it holds

$$
H\left(z^{(n+1)}\right)+a \Delta_{n}^{2} \leq H\left(z^{(n)}\right)
$$

(H2) if for each $n \in \mathbb{N}$, there exists $w^{(n+1)} \in \partial H\left(z^{(n+1)}\right)$ with

$$
\left\|w^{(n+1)}\right\|_{2} \leq \frac{b}{2}\left(\Delta_{n}+\Delta_{n+1}\right)
$$

(H3) if there exists a subsequence $\left(z^{\left(n_{j}\right)}\right)_{j \in \mathbb{N}}$ with $z^{\left(n_{j}\right)} \rightarrow \tilde{z}=(\tilde{x}, \tilde{x})$ and $H\left(z^{\left(n_{j}\right)}\right) \rightarrow H(\tilde{z})$ for $j \rightarrow \infty$.

Convergence - Requirements, Condition (H1)

Lemma

$H_{\delta_{n}}$ and $\left(z^{(n)}\right)_{n \in \mathbb{N}}$ as generated by iPiano satisfy Condition (H1), in particular for each $n \in \mathbb{N}$ it holds

$$
H_{\delta_{n+1}}\left(z^{(n+1)}\right)+\gamma_{n} \Delta_{n}^{2} \leq H_{\delta_{n}}\left(z^{(n)}\right)
$$

Convergence - Requirements, Condition (H1)

Lemma

$H_{\delta_{n}}$ and $\left(z^{(n)}\right)_{n \in \mathbb{N}}$ as generated by iPiano satisfy Condition (H1), in particular for each $n \in \mathbb{N}$ it holds

$$
H_{\delta_{n+1}}\left(z^{(n+1)}\right)+\gamma_{n} \Delta_{n}^{2} \leq H_{\delta_{n}}\left(z^{(n)}\right)
$$

Proof Sketch.

Iteration (Equation (2)) \Rightarrow

$$
w:=\frac{x^{(n)}-x^{(n+1)}}{\alpha_{n}}-\nabla f\left(x^{(n)}\right)+\frac{\beta_{n}}{\alpha_{n}}\left(x^{(n)}-x^{(n-1)}\right) \in \partial g\left(x^{(n+1)}\right)
$$

Convergence - Requirements, Condition (H1)

Proof Sketch (cont'd).

With $w \in \partial g\left(x^{(n+1)}\right)$, using the convexity of g,

$$
g\left(x^{(n+1)}\right) \leq g\left(x^{(n)}\right)-w^{T}\left(x^{(n)}-x^{(n-1)}\right)
$$

and the L_{n}-Lipschitz continuity of ∇f,
$f\left(x^{(n+1)}\right) \leq f\left(x^{(n)}\right)-+\nabla f\left(x^{(n)}\right)^{T}\left(x^{(n+1)}-x^{(n)}\right)+\frac{L_{n}}{2}\left\|x^{(n)}-x^{(n+1)}\right\|_{2}^{2} ;$
it can be shown

$$
h\left(x^{(n+1)}\right) \leq h\left(x^{(n)}\right)-\delta_{n} \Delta_{n+1}^{2}+\delta_{n} \Delta_{n}^{2}-\gamma_{n} \Delta_{n}^{2}
$$

which implies the claim as δ_{n} is monotonically decreasing.

Convergence - Requirements, Condition (H2)

Lemma

$H_{\delta_{n}}$ and $\left(z^{(n)}\right)_{n \in \mathbb{N}}$ as generated by iPiano satisfy Condition (H2), i.e. for each $n \in \mathbb{N}$ there exists $w^{(n+1)} \in \partial H_{\delta_{n+1}}\left(z^{(n+1)}\right)$ such that $\left\|w^{(n+1)}\right\|_{2} \leq \frac{7}{c_{1}}\left(\Delta_{n}+\Delta_{n+1}\right)$.

Convergence - Requirements, Condition (H2)

Lemma

$H_{\delta_{n}}$ and $\left(z^{(n)}\right)_{n \in \mathbb{N}}$ as generated by iPiano satisfy Condition (H2), i.e. for each $n \in \mathbb{N}$ there exists $w^{(n+1)} \in \partial H_{\delta_{n+1}}\left(z^{(n+1)}\right)$ such that $\left\|w^{(n+1)}\right\|_{2} \leq \frac{7}{c_{1}}\left(\Delta_{n}+\Delta_{n+1}\right)$.

Proof Sketch.

For $w^{(n+1)} \in \partial H_{\delta_{n+1}}\left(z^{(n+1)}\right)$ it is $w^{(n+1)}=\left(w_{1}^{(n+1)}, w_{2}^{(n+1)}\right)$ with

$$
\begin{aligned}
w_{1}^{(n+1)} & \in \partial g\left(x^{(n+1)}\right)+\nabla f\left(x^{(n+1)}\right)+2 \delta_{n}\left(x^{(n+1)}-x^{(n)}\right) \\
w_{2}^{(n+1)} & =-2 \delta_{n}\left(x^{(n+1)}-x^{(n)}\right)
\end{aligned}
$$

and

$$
\left\|w^{(n+1)}\right\|_{2} \leq \ldots \leq\left(\frac{1}{\alpha_{n}}+4 \delta_{n}+L_{n}\right) \Delta_{n+1}+\frac{\beta_{n}}{\alpha_{n}} \Delta_{n} \leq \frac{7}{c_{1}}\left(\Delta_{n+1}+\Delta_{n}\right)
$$

Convergence - Requirements, Condition (H3)

Lemma

$H_{\delta_{n}}$ and $\left(z^{(n)}\right)_{n \in \mathbb{N}}$ as generated by iPiano satisfy Condition (H1), i.e. there exists a subsequence $\left(z^{\left(n_{j}\right)}\right)_{j \in \mathbb{N}}$ with $z^{\left(n_{j}\right)} \rightarrow \tilde{z}=(\tilde{x}, \tilde{x})$ and $H_{\delta_{n_{j}}}\left(z^{\left(n_{j}\right)}\right) \rightarrow H_{\delta}(\tilde{z})$ for $j \rightarrow \infty$.

Convergence - Requirements, Condition (H3)

Lemma

$H_{\delta_{n}}$ and $\left(z^{(n)}\right)_{n \in \mathbb{N}}$ as generated by iPiano satisfy Condition (H1), i.e. there exists a subsequence $\left(z^{\left(n_{j}\right)}\right)_{j \in \mathbb{N}}$ with $z^{\left(n_{j}\right)} \rightarrow \tilde{z}=(\tilde{x}, \tilde{x})$ and $H_{\delta_{n_{j}}}\left(z^{\left(n_{j}\right)}\right) \rightarrow H_{\delta}(\tilde{z})$ for $j \rightarrow \infty$.

Proof Sketch.

Claim 1: by summing Condition (H1) and deducing $\sum_{n=0}^{\infty} \Delta_{n}^{2}<\infty$ it can be shown that $\lim _{n \rightarrow \infty} \Delta_{n}=0$.
Claim 2: from the coercivity of h and the Bolzano-Weierstrass theorem it follows the existence of a subsequence $\left(x^{\left(n_{j}\right)}\right)_{j \in \mathbb{N}}$ with.
Then:

$$
\lim _{j \rightarrow \infty} H_{\delta_{n_{j}+1}}\left(x^{\left(n_{j}+1\right)}, x^{\left(n_{j}\right)}\right)=H_{\delta}(\tilde{x}, \tilde{x})=h(\tilde{x})
$$

Convergence - Kurdyka-Lojasiewicz Property

The Kurdyka-Lojasiewicz property is intended to relate the behavior of the subdifferential ∂H to the function values.

Convergence - Kurdyka-Lojasiewicz Property

The Kurdyka-Lojasiewicz property is intended to relate the behavior of the subdifferential ∂H to the function values.

Definition (Informally)

For a point $\tilde{z} \in \operatorname{dom}(\partial H), H$ is said to satisfy the Kurdyka-Lojasiewicz property if there exists a concave $\phi \in C^{1}$ with $\phi(0)=0$ and $\phi^{\prime}>0$ such that

$$
\phi^{\prime}(H(z)-H(\tilde{z})) \inf _{\hat{z} \in \partial H(z)}\|\hat{z}\|_{2} \geq 1
$$

for all z in an appropriate neighborhood of \tilde{z}.

Intuitively, the inequality controls the difference in function values by the subdifferential.

Convergence - Kurdyka-Lojasiewicz Property

The Kurdyka-Lojasiewicz property is intended to relate the behavior of the subdifferential ∂H to the function values.

Definition (Informally)

For a point $\tilde{z} \in \operatorname{dom}(\partial H), H$ is said to satisfy the Kurdyka-Lojasiewicz property if there exists a concave $\phi \in C^{1}$ with $\phi(0)=0$ and $\phi^{\prime}>0$ such that

$$
\phi^{\prime}(H(z)-H(\tilde{z})) \inf _{\hat{z} \in \partial H(z)}\|\hat{z}\|_{2} \geq 1
$$

for all z in an appropriate neighborhood of \tilde{z}.

Intuitively, the inequality controls the difference in function values by the subdifferential.

Convergence - Kurdyka-Lojasiewicz Property

The Kurdyka-Lojasiewicz property is intended to relate the behavior of the subdifferential ∂H to the function values.

Definition (Informally)

For a point $\tilde{z} \in \operatorname{dom}(\partial H), H$ is said to satisfy the Kurdyka-Lojasiewicz property if there exists a concave $\phi \in C^{1}$ with $\phi(0)=0$ and $\phi^{\prime}>0$ such that

$$
\phi^{\prime}(H(z)-H(\tilde{z})) \inf _{\hat{z} \in \partial H(z)}\|\hat{z}\|_{2} \geq 1
$$

for all z in an appropriate neighborhood of \tilde{z}.

Intuitively, the inequality controls the difference in function values by the subdifferential.

Convergence - Convergence Theorem

Theorem

Let H be proper lower semicontinuous, satisfying the Kurdyka-Lojasiewicz property at $\tilde{z}=(\tilde{x}, \tilde{x})$ specified by Condition (H3), and $\left(z^{(n)}\right)_{n \in \mathbb{N}}$, satisfying Conditions (H1) - (H3). Then $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ converges to \tilde{x} such that \tilde{z} is a critical point of H.

Convergence - Convergence Theorem

Theorem

Let H be proper lower semicontinuous, satisfying the Kurdyka-Lojasiewicz property at $\tilde{z}=(\tilde{x}, \tilde{x})$ specified by Condition (H3), and $\left(z^{(n)}\right)_{n \in \mathbb{N}}$, satisfying Conditions (H1) - (H3). Then $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ converges to \tilde{x} such that \tilde{z} is a critical point of H.

It can further been shown that the convergence rate is $\mathcal{O}(1 / \sqrt{n})$ for the residual

$$
r(x):=x-\operatorname{prox}_{g}(x-\nabla f(x))
$$

in L_{2} norm.

Convergence - Convergence Theorem (cont'd)

Proof Sketch.

The proof is based on the following claim:
$\sum_{i=1}^{n} \Delta_{i} \leq \frac{1}{2}\left(\Delta_{0}-\Delta_{n}\right)+\frac{b}{a}\left[\phi\left(H\left(z^{(1)}\right)-H(\tilde{z})\right)-\phi\left(H\left(z^{(n+1)}\right)-H(\tilde{z})\right)\right]$
which is shown by induction. Then, it follows $\sum_{n=0}^{\infty} \Delta_{n}<\infty$ and $x^{(n)} \rightarrow \tilde{x}$. Using the Kurdyka-Lojasiewicz property it can be shown that $H\left(z^{(n)}\right) \rightarrow H(\tilde{z})$. With Condition (H2) it also follows that \tilde{z} is a critical point of H.

Table of Contents

(1) Problem
(2) Related Work
(3) Algorithm
(4) Convergence
(5) Implementation

6 Applications
(7) Conclusion

Implementation - Initialization

Remember, derived bounds for α_{0} and β_{0} :

$$
\begin{aligned}
& \alpha_{0}<\frac{2\left(1-\beta_{0}\right)}{L_{0}} \\
& \beta_{0} \leq \frac{b_{0}-1}{b_{0}-\frac{1}{2}} \quad \text { with } \quad b_{0}:=\frac{\delta_{-1}+\frac{L_{n}}{2}}{c_{2}+\frac{L_{n}}{2}} .
\end{aligned}
$$

Guessing an appropriate β_{0} is obviously easier than guessing δ_{-1}, so fix β_{0} and estimate L_{0} using

$$
\frac{\left\|\nabla f\left(x^{(0)}\right)-\nabla f(\hat{x})\right\|_{2}}{\left\|x^{(0)}-\hat{x}\right\|_{2}} \leq L_{0}
$$

for $\hat{x}=\operatorname{prox}_{g}\left(x^{(0)}-\nabla f\left(x^{(0)}\right)\right)$.

Implementation - Initialization

Remember, derived bounds for α_{0} and β_{0} :

$$
\begin{aligned}
& \alpha_{0}<\frac{2\left(1-\beta_{0}\right)}{L_{0}} ; \\
& \beta_{0} \leq \frac{b_{0}-1}{b_{0}-\frac{1}{2}} \quad \text { with } \quad b_{0}:=\frac{\delta_{-1}+\frac{L_{n}}{2}}{c_{2}+\frac{L_{n}}{2}}
\end{aligned}
$$

Guessing an appropriate β_{0} is obviously easier than guessing δ_{-1}, so fix β_{0} and estimate L_{0} using

$$
\frac{\left\|\nabla f\left(x^{(0)}\right)-\nabla f(\hat{x})\right\|_{2}}{\left\|x^{(0)}-\hat{x}\right\|_{2}} \leq L_{0}
$$

for $\hat{x}=\operatorname{prox}_{g}\left(x^{(0)}-\nabla f\left(x^{(0)}\right)\right)$.

Implementation - Initialization

Remember, derived bounds for α_{0} and β_{0} :

$$
\begin{aligned}
& \alpha_{0}<\frac{2\left(1-\beta_{0}\right)}{L_{0}} \\
& \beta_{0} \leq \frac{b_{0}-1}{b_{0}-\frac{1}{2}} \quad \text { with } \quad b_{0}:=\frac{\delta_{-1}+\frac{L_{n}}{2}}{c_{2}+\frac{L_{n}}{2}}
\end{aligned}
$$

Guessing an appropriate β_{0} is obviously easier than guessing δ_{-1}, so fix β_{0} and estimate L_{0} using

$$
\frac{\left\|\nabla f\left(x^{(0)}\right)-\nabla f(\hat{x})\right\|_{2}}{\left\|x^{(0)}-\hat{x}\right\|_{2}} \leq L_{0}
$$

for $\hat{x}=\operatorname{prox}_{g}\left(x^{(0)}-\nabla f\left(x^{(0)}\right)\right)$.

Implementation - Initialization

Remember, derived bounds for α_{0} and β_{0} :

$$
\begin{aligned}
& \alpha_{0}<\frac{2\left(1-\beta_{0}\right)}{L_{0}} \\
& \beta_{0} \leq \frac{b_{0}-1}{b_{0}-\frac{1}{2}} \quad \text { with } \quad b_{0}:=\frac{\delta_{-1}+\frac{L_{n}}{2}}{c_{2}+\frac{L_{n}}{2}} .
\end{aligned}
$$

Guessing an appropriate β_{0} is obviously easier than guessing δ_{-1}, so fix β_{0} and estimate L_{0} using

$$
\frac{\left\|\nabla f\left(x^{(0)}\right)-\nabla f(\hat{x})\right\|_{2}}{\left\|x^{(0)}-\hat{x}\right\|_{2}} \leq L_{0}
$$

for $\hat{x}=\operatorname{prox}_{g}\left(x^{(0)}-\nabla f\left(x^{(0)}\right)\right)$.

Implementation - Initialization (cont’d)

In practice, fix $K \gg 100$ and compute

$$
\alpha_{0}^{(k)}:=\alpha_{0}-k \frac{a_{0}-c_{1}}{K} \text { with } a_{0}:=\frac{2\left(1-\beta_{0}\right)}{\left(L_{0}+2 c_{2}\right)} \text { and } k=1, \ldots, K
$$

until $\alpha_{0}^{(k)}$ satisfies

$$
\delta_{0}:=\frac{1}{\alpha_{0}^{(k)}}-\frac{L_{0}}{2}-\frac{\beta_{0}}{2 \alpha_{0}^{(k)}} \geq \gamma_{0}:=\frac{1}{\alpha_{0}^{(k)}}-\frac{L_{0}}{2}-\frac{\beta_{0}}{\alpha_{0}^{(k)}} \geq c_{2} .
$$

Implementation - Initialization (cont’d)

In practice, fix $K \gg 100$ and compute

$$
\alpha_{0}^{(k)}:=\alpha_{0}-k \frac{a_{0}-c_{1}}{K} \text { with } a_{0}:=\frac{2\left(1-\beta_{0}\right)}{\left(L_{0}+2 c_{2}\right)} \text { and } k=1, \ldots, K
$$

until $\alpha_{0}^{(k)}$ satisfies

$$
\delta_{0}:=\frac{1}{\alpha_{0}^{(k)}}-\frac{L_{0}}{2}-\frac{\beta_{0}}{2 \alpha_{0}^{(k)}} \geq \gamma_{0}:=\frac{1}{\alpha_{0}^{(k)}}-\frac{L_{0}}{2}-\frac{\beta_{0}}{\alpha_{0}^{(k)}} \geq c_{2} .
$$

Implementation - Initialization (cont’d)

In practice, fix $K \gg 100$ and compute

$$
\alpha_{0}^{(k)}:=\alpha_{0}-k \frac{a_{0}-c_{1}}{K} \text { with } a_{0}:=\frac{2\left(1-\beta_{0}\right)}{\left(L_{0}+2 c_{2}\right)} \text { and } k=1, \ldots, K
$$

until $\alpha_{0}^{(k)}$ satisfies

$$
\delta_{0}:=\frac{1}{\alpha_{0}^{(k)}}-\frac{L_{0}}{2}-\frac{\beta_{0}}{2 \alpha_{0}^{(k)}} \geq \gamma_{0}:=\frac{1}{\alpha_{0}^{(k)}}-\frac{L_{0}}{2}-\frac{\beta_{0}}{\alpha_{0}^{(k)}} \geq c_{2}
$$

Implementation - Finding α_{n} and β_{n}

Given L_{n-1} and $\eta>1$, find the smallest $l \in \mathbb{N}$ such that

$$
\begin{equation*}
L_{n}:=\eta^{l} L_{n-1} \tag{4}
\end{equation*}
$$

satisfies

$$
\begin{aligned}
f\left(x^{(n+1)}\right) \leq f\left(x^{(n)}\right) & +\nabla f\left(x^{(n)}\right)^{T}\left(x^{(n+1)}-x^{(n)}\right) \\
& +\frac{L_{n}}{2}\left\|x^{(n+1)}-x^{(n)}\right\|_{2}^{2}
\end{aligned}
$$

Alternatively, instead of L_{n-1}, use

$$
\frac{\left\|\nabla f\left(x^{(n-1)}\right)-\nabla f(\hat{x})\right\|_{2}}{\left\|x^{(n-1)}-\hat{x}\right\|_{2}} \leq L_{n}
$$

with $\hat{x}=\operatorname{prox}_{g}\left(x^{(n-1)}-\nabla f\left(x^{(n-1)}\right)\right)$ as starting point for Equation (4).

Implementation - Finding α_{n} and β_{n}

Given L_{n-1} and $\eta>1$, find the smallest $l \in \mathbb{N}$ such that

$$
\begin{equation*}
L_{n}:=\eta^{l} L_{n-1} \tag{4}
\end{equation*}
$$

satisfies

$$
\begin{aligned}
f\left(x^{(n+1)}\right) \leq f\left(x^{(n)}\right) & +\nabla f\left(x^{(n)}\right)^{T}\left(x^{(n+1)}-x^{(n)}\right) \\
& +\frac{L_{n}}{2}\left\|x^{(n+1)}-x^{(n)}\right\|_{2}^{2}
\end{aligned}
$$

Alternatively, instead of L_{n-1}, use

$$
\frac{\left\|\nabla f\left(x^{(n-1)}\right)-\nabla f(\hat{x})\right\|_{2}}{\left\|x^{(n-1)}-\hat{x}\right\|_{2}} \leq L_{n}
$$

with $\hat{x}=\operatorname{prox}_{g}\left(x^{(n-1)}-\nabla f\left(x^{(n-1)}\right)\right)$ as starting point for Equation (4).

Implementation - Finding α_{n} and β_{n}

Given L_{n-1} and $\eta>1$, find the smallest $l \in \mathbb{N}$ such that

$$
\begin{equation*}
L_{n}:=\eta^{l} L_{n-1} \tag{4}
\end{equation*}
$$

satisfies

$$
\begin{aligned}
f\left(x^{(n+1)}\right) \leq f\left(x^{(n)}\right) & +\nabla f\left(x^{(n)}\right)^{T}\left(x^{(n+1)}-x^{(n)}\right) \\
& +\frac{L_{n}}{2}\left\|x^{(n+1)}-x^{(n)}\right\|_{2}^{2}
\end{aligned}
$$

Alternatively, instead of L_{n-1}, use

$$
\frac{\left\|\nabla f\left(x^{(n-1)}\right)-\nabla f(\hat{x})\right\|_{2}}{\left\|x^{(n-1)}-\hat{x}\right\|_{2}} \leq L_{n}
$$

with $\hat{x}=\operatorname{prox}_{g}\left(x^{(n-1)}-\nabla f\left(x^{(n-1)}\right)\right)$ as starting point for Equation (4).

Implementation - Finding α_{n} and β_{n}

Given L_{n-1} and $\eta>1$, find the smallest $l \in \mathbb{N}$ such that

$$
\begin{equation*}
L_{n}:=\eta^{l} L_{n-1} \tag{4}
\end{equation*}
$$

satisfies

$$
\begin{aligned}
f\left(x^{(n+1)}\right) \leq f\left(x^{(n)}\right) & +\nabla f\left(x^{(n)}\right)^{T}\left(x^{(n+1)}-x^{(n)}\right) \\
& +\frac{L_{n}}{2}\left\|x^{(n+1)}-x^{(n)}\right\|_{2}^{2}
\end{aligned}
$$

Alternatively, instead of L_{n-1}, use

$$
\frac{\left\|\nabla f\left(x^{(n-1)}\right)-\nabla f(\hat{x})\right\|_{2}}{\left\|x^{(n-1)}-\hat{x}\right\|_{2}} \leq L_{n}
$$

with $\hat{x}=\operatorname{prox}_{g}\left(x^{(n-1)}-\nabla f\left(x^{(n-1)}\right)\right)$ as starting point for Equation (4).

Implementation - Finding α_{n} and β_{n} (cont'd)

Similar to initialization, fix $J, K \gg 100$ and compute

$$
\begin{aligned}
& \beta_{n}^{(j)}:=\frac{b_{n}-1}{b_{n}-\frac{1}{2}}-\frac{j}{J} \frac{b_{n}-1}{b_{n}-\frac{1}{2}} \quad \text { with } \quad b_{n}:=\frac{\delta_{n-1}+\frac{L_{n}}{2}}{c_{2}+\frac{L_{n}}{2}} \text { and } j=0, \ldots, J, \\
& \alpha_{n}^{(k)}:=a_{n}-k \frac{a_{n}-c_{1}}{K} \quad \text { with } \quad a_{n}:=\frac{2\left(1-\beta_{n}\right)}{\left(L_{n}+2 c_{2}\right)} \text { and } k=1, \ldots, K
\end{aligned}
$$

until $\beta_{n}^{(j)}$ and $\alpha_{n}^{(k)}$ satisfy

$$
\delta_{n}:=\frac{1}{\alpha_{n}^{(k)}}-\frac{L_{n}}{2}-\frac{\beta_{n}^{(j)}}{2 \alpha_{n}^{(k)}} \geq \gamma_{n}:=\frac{1}{\alpha_{n}^{(k)}}-\frac{L_{n}}{2}-\frac{\beta_{n}^{(j)}}{\alpha_{n}^{(k)}} \geq c_{2}
$$

and

$$
\delta_{n} \leq \delta_{n-1}
$$

Implementation - Finding α_{n} and β_{n} (cont'd)

Similar to initialization, fix $J, K \gg 100$ and compute

$$
\begin{aligned}
& \beta_{n}^{(j)}:=\frac{b_{n}-1}{b_{n}-\frac{1}{2}}-\frac{j}{J} \frac{b_{n}-1}{b_{n}-\frac{1}{2}} \quad \text { with } \quad b_{n}:=\frac{\delta_{n-1}+\frac{L_{n}}{2}}{c_{2}+\frac{L_{n}}{2}} \text { and } j=0, \ldots, J, \\
& \alpha_{n}^{(k)}:=a_{n}-k \frac{a_{n}-c_{1}}{K} \quad \text { with } \quad a_{n}:=\frac{2\left(1-\beta_{n}\right)}{\left(L_{n}+2 c_{2}\right)} \text { and } k=1, \ldots, K
\end{aligned}
$$

until $\beta_{n}^{(j)}$ and $\alpha_{n}^{(k)}$ satisfy

$$
\delta_{n}:=\frac{1}{\alpha_{n}^{(k)}}-\frac{L_{n}}{2}-\frac{\beta_{n}^{(j)}}{2 \alpha_{n}^{(k)}} \geq \gamma_{n}:=\frac{1}{\alpha_{n}^{(k)}}-\frac{L_{n}}{2}-\frac{\beta_{n}^{(j)}}{\alpha_{n}^{(k)}} \geq c_{2}
$$

and

$$
\delta_{n} \leq \delta_{n-1}
$$

Implementation - Finding α_{n} and β_{n} (cont'd)

Similar to initialization, fix $J, K \gg 100$ and compute

$$
\begin{aligned}
& \beta_{n}^{(j)}:=\frac{b_{n}-1}{b_{n}-\frac{1}{2}}-\frac{j}{J} \frac{b_{n}-1}{b_{n}-\frac{1}{2}} \quad \text { with } \quad b_{n}:=\frac{\delta_{n-1}+\frac{L_{n}}{2}}{c_{2}+\frac{L_{n}}{2}} \text { and } j=0, \ldots, J, \\
& \alpha_{n}^{(k)}:=a_{n}-k \frac{a_{n}-c_{1}}{K} \quad \text { with } \quad a_{n}:=\frac{2\left(1-\beta_{n}\right)}{\left(L_{n}+2 c_{2}\right)} \text { and } k=1, \ldots, K
\end{aligned}
$$

until $\beta_{n}^{(j)}$ and $\alpha_{n}^{(k)}$ satisfy

$$
\delta_{n}:=\frac{1}{\alpha_{n}^{(k)}}-\frac{L_{n}}{2}-\frac{\beta_{n}^{(j)}}{2 \alpha_{n}^{(k)}} \geq \gamma_{n}:=\frac{1}{\alpha_{n}^{(k)}}-\frac{L_{n}}{2}-\frac{\beta_{n}^{(j)}}{\alpha_{n}^{(k)}} \geq c_{2}
$$

and

$$
\delta_{n} \leq \delta_{n-1}
$$

Implementation - Finding α_{n} and β_{n} (cont'd)

Similar to initialization, fix $J, K \gg 100$ and compute

$$
\begin{aligned}
& \beta_{n}^{(j)}:=\frac{b_{n}-1}{b_{n}-\frac{1}{2}}-\frac{j}{J} \frac{b_{n}-1}{b_{n}-\frac{1}{2}} \quad \text { with } \quad b_{n}:=\frac{\delta_{n-1}+\frac{L_{n}}{2}}{c_{2}+\frac{L_{n}}{2}} \text { and } j=0, \ldots, J, \\
& \alpha_{n}^{(k)}:=a_{n}-k \frac{a_{n}-c_{1}}{K} \quad \text { with } \quad a_{n}:=\frac{2\left(1-\beta_{n}\right)}{\left(L_{n}+2 c_{2}\right)} \text { and } k=1, \ldots, K
\end{aligned}
$$

until $\beta_{n}^{(j)}$ and $\alpha_{n}^{(k)}$ satisfy

$$
\delta_{n}:=\frac{1}{\alpha_{n}^{(k)}}-\frac{L_{n}}{2}-\frac{\beta_{n}^{(j)}}{2 \alpha_{n}^{(k)}} \geq \gamma_{n}:=\frac{1}{\alpha_{n}^{(k)}}-\frac{L_{n}}{2}-\frac{\beta_{n}^{(j)}}{\alpha_{n}^{(k)}} \geq c_{2}
$$

and

$$
\delta_{n} \leq \delta_{n-1}
$$

Table of Contents

(1) Problem
(2) Related Work
(3) Algorithm
(4) Convergence
(5) Implementation
(6) Applications
(7) Conclusion

Denoising - Model

Given a noisy image $u^{(0)}: \Omega=[0,1]^{2} \rightarrow[0,1]$, minimize

$$
h\left(u ; u^{(0)}, \lambda\right)=\int_{\Omega} \rho_{1}\left(u(x)-u^{(0)}(x)\right) d x+\lambda \int_{\Omega} \rho_{2}\left(\|\nabla u(x)\|_{2}\right) d x
$$

with

$$
\begin{aligned}
& \rho_{1, \mathrm{abs}}=|x| \text { and } \rho_{1, \mathrm{sqr}}(x)=x^{2} \\
& \rho_{2}(x)=\log \left(1+\frac{x^{2}}{\sigma^{2}}\right)
\end{aligned}
$$

Denoising - Model

Given a noisy image $u^{(0)}: \Omega=[0,1]^{2} \rightarrow[0,1]$, minimize

$$
h\left(u ; u^{(0)}, \lambda\right)=\int_{\Omega} \rho_{1}\left(u(x)-u^{(0)}(x)\right) d x+\lambda \int_{\Omega} \rho_{2}\left(\|\nabla u(x)\|_{2}\right) d x
$$

with

$$
\begin{aligned}
& \rho_{1, \mathrm{abs}}=|x| \text { and } \rho_{1, \mathrm{sqr}}(x)=x^{2} \\
& \rho_{2}(x)=\log \left(1+\frac{x^{2}}{\sigma^{2}}\right)
\end{aligned}
$$

Denoising - Model

Given a noisy image $u^{(0)}: \Omega=[0,1]^{2} \rightarrow[0,1]$, minimize

$$
h\left(u ; u^{(0)}, \lambda\right)=\int_{\Omega} \rho_{1}\left(u(x)-u^{(0)}(x)\right) d x+\lambda \int_{\Omega} \rho_{2}\left(\|\nabla u(x)\|_{2}\right) d x
$$

with

$$
\begin{aligned}
& \rho_{1, \mathrm{abs}}=|x| \text { and } \rho_{1, \mathrm{sqr}}(x)=x^{2} \\
& \rho_{2}(x)=\log \left(1+\frac{x^{2}}{\sigma^{2}}\right)
\end{aligned}
$$

Denoising - Model

Given a noisy image $u^{(0)}: \Omega=[0,1]^{2} \rightarrow[0,1]$, minimize

$$
h\left(u ; u^{(0)}, \lambda\right)=\int_{\Omega} \rho_{1}\left(u(x)-u^{(0)}(x)\right) d x+\lambda \int_{\Omega} \rho_{2}\left(\|\nabla u(x)\|_{2}\right) d x
$$

with

$$
\begin{aligned}
& \rho_{1, \mathrm{abs}}=|x| \text { and } \rho_{1, \mathrm{sqr}}(x)=x^{2} \\
& \rho_{2}(x)=\log \left(1+\frac{x^{2}}{\sigma^{2}}\right)
\end{aligned}
$$

$\rho_{1, \mathrm{sqr}}$ and ρ_{2} are differentiable; the proximal mapping of $\rho_{1, \mathrm{abs}}\left(x-x^{(0)}\right)$ is

$$
\operatorname{prox}_{\alpha \rho_{1, \mathrm{abs}}}(x)=\max (0,|x|-\alpha) \cdot \operatorname{sign}(x)-x^{(0)}
$$

Denoising - Results

Figure: Signal denoising experiment; input signal shown on the left with the perturbed/noisy signal on its right. Results using $\rho_{1, \text { abs }}$ and $\rho_{1, \text { sqr }}$ with $\lambda \in\{0.2,0.4,0.6,0.8\}$ are shown.

Denoising - Convergence

Figure: Convergence of iPiano. Shown is the value of the objective function $h(x(n))$ for each iterate $x(n), n \geq 0$, as well as the corresponding parameters α_{n}, β_{n} and L_{n}. Furthermore, $\Delta_{n}:=\left\|x^{(n)}-x^{(n-1)}\right\|_{2}$ is shown.

Denoising - Results (cont'd)

Figure: Image denoising experiment; noisy image in the top row, $\rho_{1, \text { abs }}$ in the middle row and $\rho_{1, \text { sqr }}$ in the bottom row.

Binary Segmentation - Model

Binary segmentation based on an approximation of the Mumford-Shah model [MS89, She05]; $u:[0,1]^{2} \rightarrow[-1,1]:$

$$
\begin{aligned}
h_{\epsilon}\left(u ; c_{+}, c_{-}, u^{(0)}, \lambda\right)= & \int_{\Omega}\left(9 \epsilon\|\nabla u(x)\|_{2}^{2}+\frac{\left(1-u(x)^{2}\right)^{2}}{64 \epsilon}\right) d x \\
& +\lambda \int_{\Omega}\left(\frac{1+u(x)}{2}\right)^{2}\left(u^{(0)}(x)-c_{+}\right)^{2} d x \\
& +\lambda \int_{\Omega}\left(\frac{1-u(x)}{2}\right)^{2}\left(u^{(0)}(x)-c_{-}\right)^{2} d x
\end{aligned}
$$

Binary Segmentation - Model

Binary segmentation based on an approximation of the Mumford-Shah model [MS89, She05]; $u:[0,1]^{2} \rightarrow[-1,1]$:

$$
\begin{aligned}
h_{\epsilon}\left(u ; c_{+}, c_{-}, u^{(0)}, \lambda\right)= & \int_{\Omega}\left(9 \epsilon\|\nabla u(x)\|_{2}^{2}+\frac{\left(1-u(x)^{2}\right)^{2}}{64 \epsilon}\right) d x \\
& +\lambda \int_{\Omega}\left(\frac{1+u(x)}{2}\right)^{2}\left(u^{(0)}(x)-c_{+}\right)^{2} d x \\
& +\lambda \int_{\Omega}\left(\frac{1-u(x)}{2}\right)^{2}\left(u^{(0)}(x)-c_{-}\right)^{2} d x
\end{aligned}
$$

(It can be shown, that for $\epsilon \rightarrow 0$,

$$
\int_{\Omega}\left(9 \epsilon\|\nabla u(x)\|_{2}^{2}+\frac{\left(1-u(x)^{2}\right)^{2}}{64 \epsilon}\right) d x
$$

approximates $|u|_{B V}$.)

Binary Segmentation - Model

Binary segmentation based on an approximation of the Mumford-Shah model [MS89, She05]; $u:[0,1]^{2} \rightarrow[-1,1]:$

$$
\begin{aligned}
& h_{\epsilon}\left(u ; c_{+}, c_{-}, u^{(0)}, \lambda\right)= \int_{\Omega}\left(9 \epsilon\|\nabla u(x)\|_{2}^{2}+\frac{\left(1-u(x)^{2}\right)^{2}}{64 \epsilon}\right) d x \\
&+\lambda \int_{\Omega}\left(\frac{1+u(x)}{2}\right)^{2}\left(u^{(0)}(x)-c_{+}\right)^{2} d x \\
&+\lambda \int_{\Omega}\left(\frac{1-u(x)}{2}\right)^{2}\left(u^{(0)}(x)-c_{-}\right)^{2} d x
\end{aligned}
$$

(It can be shown, that for $\epsilon \rightarrow 0$,

$$
\int_{\Omega}\left(9 \epsilon\|\nabla u(x)\|_{2}^{2}+\frac{\left(1-u(x)^{2}\right)^{2}}{64 \epsilon}\right) d x
$$

approximates $|u|_{B V}$.)

Binary Segmentation - Results (cont'd)

Figure: Segmentation results for thresholds $\tau=-0.2,0.0,0.2$ and using $g_{\text {sqr }}$; the foreground segment S_{f} is depicted in white.

Table of Contents

(1) Problem
(2) Related Work
(3) Algorithm
(4) Convergence
(5) Implementation

6 Applications
(7) Conclusion

Conclusion

We discussed the minimization of composite functions of the form

$$
\min _{x \in \mathbb{R}^{d}} h(x)=\min _{n \in \mathbb{R}^{d}}(f(x)+g(x)) .
$$

Conclusion

We discussed the minimization of composite functions of the form

$$
\min _{x \in \mathbb{R}^{d}} h(x)=\min _{n \in \mathbb{R}^{d}}(f(x)+g(x)) .
$$

Ochs et al. [OCBP14] proposed the iPiano algorithm to solve this problem under to following requirements:

- g proper closed convex and lower semi continuous;
- $f \in C^{1}$ with L-Lipschitz continuous ∇f;
- h coercive and bounded below;
- and $H_{\delta_{n}}\left(x^{(n)}, x^{(n-1)}\right)=h\left(x^{(n)}\right)+\delta_{n} \Delta_{n}$ satisfying the Kurdyka-Lojasiewicz property [Loj93, Kur98] at a critical point.

Conclusion

We discussed the minimization of composite functions of the form

$$
\min _{x \in \mathbb{R}^{d}} h(x)=\min _{n \in \mathbb{R}^{d}}(f(x)+g(x)) .
$$

Ochs et al. [OCBP14] proposed the iPiano algorithm to solve this problem under to following requirements:

- g proper closed convex and lower semi continuous;
- $f \in C^{1}$ with L-Lipschitz continuous ∇f;
- h coercive and bounded below;
- and $H_{\delta_{n}}\left(x^{(n)}, x^{(n-1)}\right)=h\left(x^{(n)}\right)+\delta_{n} \Delta_{n}$ satisfying the Kurdyka-Lojasiewicz property [Loj93, Kur98] at a critical point.

The algorithm can be implemented efficiently in C++ and used to solve image processing tasks.

Appendix - Kurdyka-Lojasiewicz Property

Definition

H has the Kurdyka-Lojasiewicz property at point $\tilde{z} \in \operatorname{dom}(\partial H)$ there exist $\eta \in(0, \infty]$, a neighborhood U of \tilde{z}, and a continuous concave function $\phi:[0, \eta) \rightarrow \mathbb{R}_{+}$such that
$-\phi \in C^{1}((0, \eta)), \phi(0)=0$, and for all $s \in(0, \eta), \phi^{\prime}(s)>0$;

- and for all $z \in U \cap\left\{z \in \mathbb{R}^{2 d} \mid H(\tilde{z})<H(z)<H(\tilde{z})+\eta\right\}$ the Kurdyka-Lojasiewicz inequality holds:

$$
\phi^{\prime}(H(z)-H(\tilde{z})) \inf _{\hat{z} \in \partial H(z)}\|\hat{z}\|_{2} \geq 1
$$

Appendix - Kurdyka-Lojasiewicz Property

Definition

H has the Kurdyka-Lojasiewicz property at point $\tilde{z} \in \operatorname{dom}(\partial H)$ there exist $\eta \in(0, \infty]$, a neighborhood U of \tilde{z}, and a continuous concave function $\phi:[0, \eta) \rightarrow \mathbb{R}_{+}$such that
$-\phi \in C^{1}((0, \eta)), \phi(0)=0$, and for all $s \in(0, \eta), \phi^{\prime}(s)>0$;

- and for all $z \in U \cap\left\{z \in \mathbb{R}^{2 d} \mid H(\tilde{z})<H(z)<H(\tilde{z})+\eta\right\}$ the Kurdyka-Lojasiewicz inequality holds:

$$
\phi^{\prime}(H(z)-H(\tilde{z})) \inf _{\hat{z} \in \partial H(z)}\|\hat{z}\|_{2} \geq 1
$$

Intuitively, for $H \in C^{1}$, this means that ϕ has to be steep around critical points \tilde{z} of H where ∇H is flat.

围 Krzysztof Kurdyka．
On gradients of functions definable in o－minimal structures．
Annales de l＇institut Fourier，48（3）：769－783， 1998.
囯 Stanislas Lojasiewicz．
Sur la géométrie semi－et sous－analytique．
Annales de l＇institut Fourier，43（5）：1575－1595， 1993.
E David Mumford and Jayant Shah．
Optimal approximations by piecewise smooth functions and associated variational problems．
Comm．on Pure and Applied Mathematics，42（5）：577－685， 1989.
围 Peter Ochs，Yunjin Chen，Thomas Brox，and Thomas Pock． ipiano：Inertial proximal algorithm for nonconvex optimization． SIAM J．Imaging Sciences，7（2）：1388－1419， 2014.
囯 Jianhong Shen．
Gamma－convergence approximation to piecewise constant mumford－shah segmentation．

In Advanced Concepts for Intelligent Vision Systems, International Conference on, volume 3708 of Lecture Notes in Computer Science, pages 499-506, Antwerpen, Belgium, September 2005. Springer.

