
iPiano: Inertial Proximal Algorithm for
Non-Convex Optimization

David Stutz

June 2, 2016

David Stutz | June 2, 2016 0/34David Stutz | June 2, 2016 1/34

1 Problem

2 Related Work

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Table of Contents

David Stutz | June 2, 2016 2/34

Problem. Minimize composite function

min
x∈Rd

h(x) = min
n∈Rd

(f(x) + g(x)) (1)

where

– f : Rd → R ∈ C1 with L-Lipschitz continuous gradient;

– g : dom(g) ⊂ Rd → R∞ is proper closed convex and lower
semicontinuous;

– and h coercive and bounded below by

−∞ < hmin := inf
x∈Rd

h(x).

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term to solve Equation (1) iteratively.

Problem

David Stutz | June 2, 2016 3/34

Problem. Minimize composite function

min
x∈Rd

h(x) = min
n∈Rd

(f(x) + g(x)) (1)

where

– f : Rd → R ∈ C1 with L-Lipschitz continuous gradient;

– g : dom(g) ⊂ Rd → R∞ is proper closed convex and lower
semicontinuous;

– and h coercive and bounded below by

−∞ < hmin := inf
x∈Rd

h(x).

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term to solve Equation (1) iteratively.

Problem

David Stutz | June 2, 2016 3/34

Problem. Minimize composite function

min
x∈Rd

h(x) = min
n∈Rd

(f(x) + g(x)) (1)

where

– f : Rd → R ∈ C1 with L-Lipschitz continuous gradient;

– g : dom(g) ⊂ Rd → R∞ is proper closed convex and lower
semicontinuous;

– and h coercive and bounded below by

−∞ < hmin := inf
x∈Rd

h(x).

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term to solve Equation (1) iteratively.

Problem

David Stutz | June 2, 2016 3/34

Problem. Minimize composite function

min
x∈Rd

h(x) = min
n∈Rd

(f(x) + g(x)) (1)

where

– f : Rd → R ∈ C1 with L-Lipschitz continuous gradient;

– g : dom(g) ⊂ Rd → R∞ is proper closed convex and lower
semicontinuous;

– and h coercive and bounded below by

−∞ < hmin := inf
x∈Rd

h(x).

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term to solve Equation (1) iteratively.

Problem

David Stutz | June 2, 2016 3/34

Problem. Minimize composite function

min
x∈Rd

h(x) = min
n∈Rd

(f(x) + g(x)) (1)

where

– f : Rd → R ∈ C1 with L-Lipschitz continuous gradient;

– g : dom(g) ⊂ Rd → R∞ is proper closed convex and lower
semicontinuous;

– and h coercive and bounded below by

−∞ < hmin := inf
x∈Rd

h(x).

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term to solve Equation (1) iteratively.

Problem

David Stutz | June 2, 2016 3/34

1 Problem

2 Related Work

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Table of Contents

David Stutz | June 2, 2016 4/34

Gradient descent for h ∈ C1:

x(n+1) = x(n) − αn∇h(x(n)).

Gradient descent with inertial force/momentum term:

x(n+1) = x(n) − αn∇h(x(n)) + βn(x(n) − x(n−1)).

Proximal point for h being proper closed convex:

x(n+1) = proxαnh(x(n)).

Forward-backward splitting for h = f + g with f ∈ C1 and f , g being
proper closed convex:

x(n+1) = proxαng(x
(n) − αn∇f(x(n))).

Related Work

David Stutz | June 2, 2016 5/34

Gradient descent for h ∈ C1:

x(n+1) = x(n) − αn∇h(x(n)).

Gradient descent with inertial force/momentum term:

x(n+1) = x(n) − αn∇h(x(n)) + βn(x(n) − x(n−1)).

Proximal point for h being proper closed convex:

x(n+1) = proxαnh(x(n)).

Forward-backward splitting for h = f + g with f ∈ C1 and f , g being
proper closed convex:

x(n+1) = proxαng(x
(n) − αn∇f(x(n))).

Related Work

David Stutz | June 2, 2016 5/34

Gradient descent for h ∈ C1:

x(n+1) = x(n) − αn∇h(x(n)).

Gradient descent with inertial force/momentum term:

x(n+1) = x(n) − αn∇h(x(n)) + βn(x(n) − x(n−1)).

Proximal point for h being proper closed convex:

x(n+1) = proxαnh(x(n)).

Forward-backward splitting for h = f + g with f ∈ C1 and f , g being
proper closed convex:

x(n+1) = proxαng(x
(n) − αn∇f(x(n))).

Related Work

David Stutz | June 2, 2016 5/34

Gradient descent for h ∈ C1:

x(n+1) = x(n) − αn∇h(x(n)).

Gradient descent with inertial force/momentum term:

x(n+1) = x(n) − αn∇h(x(n)) + βn(x(n) − x(n−1)).

Proximal point for h being proper closed convex:

x(n+1) = proxαnh(x(n)).

Forward-backward splitting for h = f + g with f ∈ C1 and f , g being
proper closed convex:

x(n+1) = proxαng(x
(n) − αn∇f(x(n))).

Related Work

David Stutz | June 2, 2016 5/34

Gradient descent for h ∈ C1:

x(n+1) = x(n) − αn∇h(x(n)).

Gradient descent with inertial force/momentum term:

x(n+1) = x(n) − αn∇h(x(n)) + βn(x(n) − x(n−1)).

Proximal point for h being proper closed convex:

x(n+1) = proxαnh(x(n)).

Forward-backward splitting for h = f + g with f ∈ C1 and f , g being
proper closed convex:

x(n+1) = proxαng(x
(n) − αn∇f(x(n))).

Related Work

David Stutz | June 2, 2016 5/34

1 Problem

2 Related Work

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Table of Contents

David Stutz | June 2, 2016 6/34

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term.

x(n+1) = proxαng(x
(n) − αn∇f(x(n)) + βn(x(n) − x(n−1))) (2)

with step size parameters (αn)n∈N and momentum parameters (βn)n∈N.

Backtracking to estimate the local Lipschitz constant Ln such that

f(x(n+1)) ≤ f(x(n))+∇f(x(n))T (x(n+1) − x(n))

+
Ln
2
‖x(n+1) − x(n)‖22

(3)

Algorithm – Iterates and Backtracking

David Stutz | June 2, 2016 7/34

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term:

x(n+1) = proxαng(x
(n) − αn∇f(x(n)) + βn(x(n) − x(n−1))) (2)

with step size parameters (αn)n∈N and momentum parameters (βn)n∈N.

Backtracking to estimate the local Lipschitz constant Ln such that

f(x(n+1)) ≤ f(x(n))+∇f(x(n))T (x(n+1) − x(n))

+
Ln
2
‖x(n+1) − x(n)‖22

(3)

Algorithm – Iterates and Backtracking

David Stutz | June 2, 2016 7/34

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term

x(n+1) = proxαng(x
(n) − αn∇f(x(n)) + βn(x(n) − x(n−1))) (2)

with step size parameters (αn)n∈N and momentum parameters (βn)n∈N.

Backtracking to estimate the local Lipschitz constant Ln such that

f(x(n+1)) ≤ f(x(n))+∇f(x(n))T (x(n+1) − x(n))

+
Ln
2
‖x(n+1) − x(n)‖22

(3)

Algorithm – Iterates and Backtracking

David Stutz | June 2, 2016 7/34

Ochs et al. [OCBP14] combine forward-backward splitting with an inertial
force/momentum term

x(n+1) = proxαng(x
(n) − αn∇f(x(n)) + βn(x(n) − x(n−1))) (2)

with step size parameters (αn)n∈N and momentum parameters (βn)n∈N.

Backtracking to estimate the local Lipschitz constant Ln such that

f(x(n+1)) ≤ f(x(n))+∇f(x(n))T (x(n+1) − x(n))

+
Ln
2
‖x(n+1) − x(n)‖22

(3)

Algorithm – Iterates and Backtracking

David Stutz | June 2, 2016 7/34

Algorithm iPiano.

1: choose c1, c2 > 0 close to zero, L−1 > 0, η > 1, x(0)

2: x(−1) := x(0)

3: for n = 1, . . . do
4:

5:

6:

7:

8: choose αn ≥ c1, βn ≥ 0
9:

10: x(n+1) = proxαng
(
x(n) − αn∇f(x(n)) + βn(x(n) − x(n−1))

)
11:

12: end for

Algorithm – iPiano

David Stutz | June 2, 2016 8/34

Algorithm iPiano.

1: choose c1, c2 > 0 close to zero, L−1 > 0, η > 1, x(0)

2: x(−1) := x(0)

3: for n = 1, . . . do
4:

5:

6:

7: repeat
8: choose αn ≥ c1, βn ≥ 0
9: until δn := 1

αn
− Ln

2 −
βn

2αn
≥ γn := 1

αn
− Ln

2 −
βn
αn
≥ c2

10: x(n+1) = proxαng
(
x(n) − αn∇f(x(n)) + βn(x(n) − x(n−1))

)
11:

12: end for

Algorithm – iPiano

David Stutz | June 2, 2016 8/34

Algorithm iPiano.

1: choose c1, c2 > 0 close to zero, L−1 > 0, η > 1, x(0)

2: x(−1) := x(0)

3: for n = 1, . . . do
4: Ln := 1

ηLn−1

5: repeat
6: Ln := ηLn
7: repeat
8: choose αn ≥ c1, βn ≥ 0
9: until δn := 1

αn
− Ln

2 −
βn

2αn
≥ γn := 1

αn
− Ln

2 −
βn
αn
≥ c2

10: x(n+1) = proxαng
(
x(n) − αn∇f(x(n)) + βn(x(n) − x(n−1))

)
11: until (3) is satisifed for x(n+1)

12: end for

Algorithm – iPiano

David Stutz | June 2, 2016 8/34

Lemma

For each n ∈ N, given Ln > 0, there exist αn < 2(1− βn)/Ln and
0 ≤ βn < 1 as in iPiano such that c2 ≤ γn ≤ δn and (δn)n∈N is
monotonically decreasing.

Proof Sketch.

With bn := (δn−1 + Ln
2)/(c2 + Ln

2):

γn ≥ c2 ⇔ αn ≤
1− βn
c2 + Ln

2

<
2(1− βn)

Ln

δn−1 ≥ δn ⇔
1− βn
c2 + Ln

2

≥ αn ≥
1− βn

2

δn−1 + Ln
2

⇒ βn ≤
bn − 1

bn − 1
2

Algorithm – Monotonically Decreasing δn

David Stutz | June 2, 2016 9/34

Lemma

For each n ∈ N, given Ln > 0, there exist αn < 2(1− βn)/Ln and
0 ≤ βn < 1 as in iPiano such that c2 ≤ γn ≤ δn and (δn)n∈N is
monotonically decreasing.

Proof Sketch.

With bn := (δn−1 + Ln
2)/(c2 + Ln

2):

γn ≥ c2 ⇔ αn ≤
1− βn
c2 + Ln

2

<
2(1− βn)

Ln

δn−1 ≥ δn ⇔
1− βn
c2 + Ln

2

≥ αn ≥
1− βn

2

δn−1 + Ln
2

⇒ βn ≤
bn − 1

bn − 1
2

Algorithm – Monotonically Decreasing δn

David Stutz | June 2, 2016 9/34

1 Problem

2 Related Work

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Table of Contents

David Stutz | June 2, 2016 10/34

Convergence analysis is based on three requirements regarding

Hδn+1(x(n+1), x(n)) :=h(x(n+1)) + δn+1 ‖x(n) − x(n−1)‖22︸ ︷︷ ︸
:=h(x(n+1)) + δn+1 ∆2

n+1

and the sequence

(z(n+1))n∈N := (x(n+1), x(n))n∈N ⊂ R2d

generated by iPiano.

Furthermore, Hδn is required to satisfy the Kurdyka-Lojasiewicz property
[Loj93, Kur98] at a critical point z̃ of Hδn .

Convergence – Overview

David Stutz | June 2, 2016 11/34

Convergence analysis is based on three requirements regarding

Hδn+1(x(n+1), x(n)) :=h(x(n+1)) + δn+1 ‖x(n) − x(n−1)‖22︸ ︷︷ ︸
:=h(x(n+1)) + δn+1 ∆2

n+1

and the sequence

(z(n+1))n∈N := (x(n+1), x(n))n∈N ⊂ R2d

generated by iPiano.

Furthermore, Hδn is required to satisfy the Kurdyka-Lojasiewicz property
[Loj93, Kur98] at a critical point z̃ of Hδn .

Convergence – Overview

David Stutz | June 2, 2016 11/34

Convergence analysis is based on three requirements regarding

Hδn+1(x(n+1), x(n)) :=h(x(n+1)) + δn+1 ‖x(n) − x(n−1)‖22︸ ︷︷ ︸
:=h(x(n+1)) + δn+1 ∆2

n+1

and the sequence

(z(n+1))n∈N := (x(n+1), x(n))n∈N ⊂ R2d

generated by iPiano.

Furthermore, Hδn is required to satisfy the Kurdyka-Lojasiewicz property
[Loj93, Kur98] at a critical point z̃ of Hδn .

Convergence – Overview

David Stutz | June 2, 2016 11/34

Convergence analysis is based on three requirements regarding

Hδn+1(x(n+1), x(n)) :=h(x(n+1)) + δn+1 ‖x(n) − x(n−1)‖22︸ ︷︷ ︸
:=h(x(n+1)) + δn+1 ∆2

n+1

and the sequence

(z(n+1))n∈N := (x(n+1), x(n))n∈N ⊂ R2d

generated by iPiano.

Furthermore, Hδn is required to satisfy the Kurdyka-Lojasiewicz property
[Loj93, Kur98] at a critical point z̃ of Hδn .

Convergence – Overview

David Stutz | June 2, 2016 11/34

Definition

Given a, b > 0. H : R2d → R∞ and a sequence (z(n))n∈N ⊂ R2d satisfy:

(H1) if for each n ∈ N, it holds

H(z(n+1)) + a∆2
n ≤ H(z(n));

(H2) if for each n ∈ N, there exists w(n+1) ∈ ∂H(z(n+1)) with

‖w(n+1)‖2 ≤
b

2
(∆n + ∆n+1);

(H3) if there exists a subsequence (z(nj))j∈N with z(nj) → z̃ = (x̃, x̃)
and H(z(nj))→ H(z̃) for j →∞.

Convergence – Requirements

David Stutz | June 2, 2016 12/34

Definition

Given a, b > 0. H : R2d → R∞ and a sequence (z(n))n∈N ⊂ R2d satisfy:

(H1) if for each n ∈ N, it holds

H(z(n+1)) + a∆2
n ≤ H(z(n));

(H2) if for each n ∈ N, there exists w(n+1) ∈ ∂H(z(n+1)) with

‖w(n+1)‖2 ≤
b

2
(∆n + ∆n+1);

(H3) if there exists a subsequence (z(nj))j∈N with z(nj) → z̃ = (x̃, x̃)
and H(z(nj))→ H(z̃) for j →∞.

Convergence – Requirements

David Stutz | June 2, 2016 12/34

Definition

Given a, b > 0. H : R2d → R∞ and a sequence (z(n))n∈N ⊂ R2d satisfy:

(H1) if for each n ∈ N, it holds

H(z(n+1)) + a∆2
n ≤ H(z(n));

(H2) if for each n ∈ N, there exists w(n+1) ∈ ∂H(z(n+1)) with

‖w(n+1)‖2 ≤
b

2
(∆n + ∆n+1);

(H3) if there exists a subsequence (z(nj))j∈N with z(nj) → z̃ = (x̃, x̃)
and H(z(nj))→ H(z̃) for j →∞.

Convergence – Requirements

David Stutz | June 2, 2016 12/34

Lemma

Hδn and (z(n))n∈N as generated by iPiano satisfy Condition (H1), in
particular for each n ∈ N it holds

Hδn+1(z(n+1)) + γn∆2
n ≤ Hδn(z(n));

Proof Sketch.

Iteration (Equation (2))⇒

w :=
x(n) − x(n+1)

αn
−∇f(x(n)) +

βn
αn

(x(n) − x(n−1)) ∈ ∂g(x(n+1))

Convergence – Requirements, Condition (H1)

David Stutz | June 2, 2016 13/34

Lemma

Hδn and (z(n))n∈N as generated by iPiano satisfy Condition (H1), in
particular for each n ∈ N it holds

Hδn+1(z(n+1)) + γn∆2
n ≤ Hδn(z(n));

Proof Sketch.

Iteration (Equation (2))⇒

w :=
x(n) − x(n+1)

αn
−∇f(x(n)) +

βn
αn

(x(n) − x(n−1)) ∈ ∂g(x(n+1))

Convergence – Requirements, Condition (H1)

David Stutz | June 2, 2016 13/34

Proof Sketch (cont’d).

With w ∈ ∂g(x(n+1)), using the convexity of g,

g(x(n+1)) ≤ g(x(n))− wT (x(n) − x(n−1)),

and the Ln-Lipschitz continuity of ∇f ,

f(x(n+1)) ≤ f(x(n))−+∇f(x(n))T (x(n+1) − x(n)) +
Ln
2
‖x(n) − x(n+1)‖22;

it can be shown

h(x(n+1)) ≤ h(x(n))− δn∆2
n+1 + δn∆2

n − γn∆2
n

which implies the claim as δn is monotonically decreasing.

Convergence – Requirements, Condition (H1)

David Stutz | June 2, 2016 14/34

Lemma

Hδn and (z(n))n∈N as generated by iPiano satisfy Condition (H2), i.e. for
each n ∈ N there exists w(n+1) ∈ ∂Hδn+1(z(n+1)) such that
‖w(n+1)‖2 ≤ 7

c1
(∆n + ∆n+1).

Proof Sketch.

For w(n+1) ∈ ∂Hδn+1(z(n+1)) it is w(n+1) = (w
(n+1)
1 , w

(n+1)
2) with

w
(n+1)
1 ∈ ∂g(x(n+1)) +∇f(x(n+1)) + 2δn(x(n+1) − x(n))

w
(n+1)
2 = −2δn(x(n+1) − x(n))

and

‖w(n+1)‖2 ≤ ... ≤ (
1

αn
+ 4δn + Ln)∆n+1 +

βn
αn

∆n ≤
7

c1
(∆n+1 + ∆n)

Convergence – Requirements, Condition (H2)

David Stutz | June 2, 2016 15/34

Lemma

Hδn and (z(n))n∈N as generated by iPiano satisfy Condition (H2), i.e. for
each n ∈ N there exists w(n+1) ∈ ∂Hδn+1(z(n+1)) such that
‖w(n+1)‖2 ≤ 7

c1
(∆n + ∆n+1).

Proof Sketch.

For w(n+1) ∈ ∂Hδn+1(z(n+1)) it is w(n+1) = (w
(n+1)
1 , w

(n+1)
2) with

w
(n+1)
1 ∈ ∂g(x(n+1)) +∇f(x(n+1)) + 2δn(x(n+1) − x(n))

w
(n+1)
2 = −2δn(x(n+1) − x(n))

and

‖w(n+1)‖2 ≤ ... ≤ (
1

αn
+ 4δn + Ln)∆n+1 +

βn
αn

∆n ≤
7

c1
(∆n+1 + ∆n)

Convergence – Requirements, Condition (H2)

David Stutz | June 2, 2016 15/34

Lemma

Hδn and (z(n))n∈N as generated by iPiano satisfy Condition (H1), i.e.
there exists a subsequence (z(nj))j∈N with z(nj) → z̃ = (x̃, x̃) and
Hδnj

(z(nj))→ Hδ(z̃) for j →∞.

Proof Sketch.

Claim 1: by summing Condition (H1) and deducing
∑∞

n=0 ∆2
n <∞ it can

be shown that limn→∞∆n = 0.
Claim 2: from the coercivity of h and the Bolzano-Weierstrass theorem it
follows the existence of a subsequence (x(nj))j∈N with.
Then:

lim
j→∞

Hδnj+1(x(nj+1), x(nj)) = Hδ(x̃, x̃) = h(x̃).

Convergence – Requirements, Condition (H3)

David Stutz | June 2, 2016 16/34

Lemma

Hδn and (z(n))n∈N as generated by iPiano satisfy Condition (H1), i.e.
there exists a subsequence (z(nj))j∈N with z(nj) → z̃ = (x̃, x̃) and
Hδnj

(z(nj))→ Hδ(z̃) for j →∞.

Proof Sketch.

Claim 1: by summing Condition (H1) and deducing
∑∞

n=0 ∆2
n <∞ it can

be shown that limn→∞∆n = 0.
Claim 2: from the coercivity of h and the Bolzano-Weierstrass theorem it
follows the existence of a subsequence (x(nj))j∈N with.
Then:

lim
j→∞

Hδnj+1(x(nj+1), x(nj)) = Hδ(x̃, x̃) = h(x̃).

Convergence – Requirements, Condition (H3)

David Stutz | June 2, 2016 16/34

The Kurdyka-Lojasiewicz property is intended to relate the behavior of
the subdifferential ∂H to the function values.

Definition (Informally)

For a point z̃ ∈ dom(∂H), H is said to satisfy the Kurdyka-Lojasiewicz
property if there exists a concave φ ∈ C1 with φ(0) = 0 and φ′ > 0 such
that

φ′(H(z)−H(z̃)) inf
ẑ∈∂H(z)

‖ẑ‖2 ≥ 1

for all z in an appropriate neighborhood of z̃.

Intuitively, the inequality controls the difference in function values by the
subdifferential.

Convergence – Kurdyka-Lojasiewicz Property

David Stutz | June 2, 2016 17/34

The Kurdyka-Lojasiewicz property is intended to relate the behavior of
the subdifferential ∂H to the function values.

Definition (Informally)

For a point z̃ ∈ dom(∂H), H is said to satisfy the Kurdyka-Lojasiewicz
property if there exists a concave φ ∈ C1 with φ(0) = 0 and φ′ > 0 such
that

φ′(H(z)−H(z̃)) inf
ẑ∈∂H(z)

‖ẑ‖2 ≥ 1

for all z in an appropriate neighborhood of z̃.

Intuitively, the inequality controls the difference in function values by the
subdifferential.

Convergence – Kurdyka-Lojasiewicz Property

David Stutz | June 2, 2016 17/34

The Kurdyka-Lojasiewicz property is intended to relate the behavior of
the subdifferential ∂H to the function values.

Definition (Informally)

For a point z̃ ∈ dom(∂H), H is said to satisfy the Kurdyka-Lojasiewicz
property if there exists a concave φ ∈ C1 with φ(0) = 0 and φ′ > 0 such
that

φ′(H(z)−H(z̃)) inf
ẑ∈∂H(z)

‖ẑ‖2 ≥ 1

for all z in an appropriate neighborhood of z̃.

Intuitively, the inequality controls the difference in function values by the
subdifferential.

Convergence – Kurdyka-Lojasiewicz Property

David Stutz | June 2, 2016 17/34

The Kurdyka-Lojasiewicz property is intended to relate the behavior of
the subdifferential ∂H to the function values.

Definition (Informally)

For a point z̃ ∈ dom(∂H), H is said to satisfy the Kurdyka-Lojasiewicz
property if there exists a concave φ ∈ C1 with φ(0) = 0 and φ′ > 0 such
that

φ′(H(z)−H(z̃)) inf
ẑ∈∂H(z)

‖ẑ‖2 ≥ 1

for all z in an appropriate neighborhood of z̃.

Intuitively, the inequality controls the difference in function values by the
subdifferential.

Convergence – Kurdyka-Lojasiewicz Property

David Stutz | June 2, 2016 17/34

Theorem

Let H be proper lower semicontinuous, satisfying the
Kurdyka-Lojasiewicz property at z̃ = (x̃, x̃) specified by Condition (H3),
and (z(n))n∈N, satisfying Conditions (H1) - (H3). Then (x(n))n∈N
converges to x̃ such that z̃ is a critical point of H .

It can further been shown that the convergence rate is O (1/
√
n) for the

residual

r(x) := x− proxg(x−∇f(x))

in L2 norm.

Convergence – Convergence Theorem

David Stutz | June 2, 2016 18/34

Theorem

Let H be proper lower semicontinuous, satisfying the
Kurdyka-Lojasiewicz property at z̃ = (x̃, x̃) specified by Condition (H3),
and (z(n))n∈N, satisfying Conditions (H1) - (H3). Then (x(n))n∈N
converges to x̃ such that z̃ is a critical point of H .

It can further been shown that the convergence rate is O (1/
√
n) for the

residual

r(x) := x− proxg(x−∇f(x))

in L2 norm.

Convergence – Convergence Theorem

David Stutz | June 2, 2016 18/34

Proof Sketch.

The proof is based on the following claim:

n∑
i=1

∆i ≤
1

2
(∆0 −∆n) +

b

a

[
φ(H(z(1))−H(z̃))− φ(H(z(n+1))−H(z̃))

]
which is shown by induction. Then, it follows

∑∞
n=0 ∆n <∞ and

x(n) → x̃. Using the Kurdyka-Lojasiewicz property it can be shown that
H(z(n))→ H(z̃). With Condition (H2) it also follows that z̃ is a critical
point of H .

Convergence – Convergence Theorem (cont’d)

David Stutz | June 2, 2016 19/34

1 Problem

2 Related Work

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Table of Contents

David Stutz | June 2, 2016 20/34

Remember, derived bounds for α0 and β0:

α0 <
2(1− β0)

L0
;

β0 ≤
b0 − 1

b0 − 1
2

with b0 :=
δ−1 + Ln

2

c2 + Ln
2

.

Guessing an appropriate β0 is obviously easier than guessing δ−1, so fix
β0 and estimate L0 using

‖∇f(x(0))−∇f(x̂)‖2
‖x(0) − x̂‖2

≤ L0

for x̂ = proxg(x
(0) −∇f(x(0))).

Implementation – Initialization

David Stutz | June 2, 2016 21/34

Remember, derived bounds for α0 and β0:

α0 <
2(1− β0)

L0
;

β0 ≤
b0 − 1

b0 − 1
2

with b0 :=
δ−1 + Ln

2

c2 + Ln
2

.

Guessing an appropriate β0 is obviously easier than guessing δ−1, so fix
β0 and estimate L0 using

‖∇f(x(0))−∇f(x̂)‖2
‖x(0) − x̂‖2

≤ L0

for x̂ = proxg(x
(0) −∇f(x(0))).

Implementation – Initialization

David Stutz | June 2, 2016 21/34

Remember, derived bounds for α0 and β0:

α0 <
2(1− β0)

L0
;

β0 ≤
b0 − 1

b0 − 1
2

with b0 :=
δ−1 + Ln

2

c2 + Ln
2

.

Guessing an appropriate β0 is obviously easier than guessing δ−1, so fix
β0 and estimate L0 using

‖∇f(x(0))−∇f(x̂)‖2
‖x(0) − x̂‖2

≤ L0

for x̂ = proxg(x
(0) −∇f(x(0))).

Implementation – Initialization

David Stutz | June 2, 2016 21/34

Remember, derived bounds for α0 and β0:

α0 <
2(1− β0)

L0
;

β0 ≤
b0 − 1

b0 − 1
2

with b0 :=
δ−1 + Ln

2

c2 + Ln
2

.

Guessing an appropriate β0 is obviously easier than guessing δ−1, so fix
β0 and estimate L0 using

‖∇f(x(0))−∇f(x̂)‖2
‖x(0) − x̂‖2

≤ L0

for x̂ = proxg(x
(0) −∇f(x(0))).

Implementation – Initialization

David Stutz | June 2, 2016 21/34

In practice, fix K � 100 and compute

α
(k)
0 := α0 − k

a0 − c1

K
with a0 :=

2(1− β0)

(L0 + 2c2)
and k = 1, . . . ,K

until α(k)
0 satisfies

δ0 :=
1

α
(k)
0

− L0

2
− β0

2α
(k)
0

≥ γ0 :=
1

α
(k)
0

− L0

2
− β0

α
(k)
0

≥ c2.

Implementation – Initialization (cont’d)

David Stutz | June 2, 2016 22/34

In practice, fix K � 100 and compute

α
(k)
0 := α0 − k

a0 − c1

K
with a0 :=

2(1− β0)

(L0 + 2c2)
and k = 1, . . . ,K

until α(k)
0 satisfies

δ0 :=
1

α
(k)
0

− L0

2
− β0

2α
(k)
0

≥ γ0 :=
1

α
(k)
0

− L0

2
− β0

α
(k)
0

≥ c2.

Implementation – Initialization (cont’d)

David Stutz | June 2, 2016 22/34

In practice, fix K � 100 and compute

α
(k)
0 := α0 − k

a0 − c1

K
with a0 :=

2(1− β0)

(L0 + 2c2)
and k = 1, . . . ,K

until α(k)
0 satisfies

δ0 :=
1

α
(k)
0

− L0

2
− β0

2α
(k)
0

≥ γ0 :=
1

α
(k)
0

− L0

2
− β0

α
(k)
0

≥ c2.

Implementation – Initialization (cont’d)

David Stutz | June 2, 2016 22/34

Given Ln−1 and η > 1, find the smallest l ∈ N such that

Ln := ηlLn−1 (4)

satisfies

f(x(n+1)) ≤ f(x(n))+∇f(x(n))T (x(n+1) − x(n))

+
Ln
2
‖x(n+1) − x(n)‖22.

Alternatively, instead of Ln−1, use

‖∇f(x(n−1))−∇f(x̂)‖2
‖x(n−1) − x̂‖2

≤ Ln

with x̂ = proxg(x
(n−1) −∇f(x(n−1))) as starting point for Equation (4).

Implementation – Finding αn and βn

David Stutz | June 2, 2016 23/34

Given Ln−1 and η > 1, find the smallest l ∈ N such that

Ln := ηlLn−1 (4)

satisfies

f(x(n+1)) ≤ f(x(n))+∇f(x(n))T (x(n+1) − x(n))

+
Ln
2
‖x(n+1) − x(n)‖22.

Alternatively, instead of Ln−1, use

‖∇f(x(n−1))−∇f(x̂)‖2
‖x(n−1) − x̂‖2

≤ Ln

with x̂ = proxg(x
(n−1) −∇f(x(n−1))) as starting point for Equation (4).

Implementation – Finding αn and βn

David Stutz | June 2, 2016 23/34

Given Ln−1 and η > 1, find the smallest l ∈ N such that

Ln := ηlLn−1 (4)

satisfies

f(x(n+1)) ≤ f(x(n))+∇f(x(n))T (x(n+1) − x(n))

+
Ln
2
‖x(n+1) − x(n)‖22.

Alternatively, instead of Ln−1, use

‖∇f(x(n−1))−∇f(x̂)‖2
‖x(n−1) − x̂‖2

≤ Ln

with x̂ = proxg(x
(n−1) −∇f(x(n−1))) as starting point for Equation (4).

Implementation – Finding αn and βn

David Stutz | June 2, 2016 23/34

Given Ln−1 and η > 1, find the smallest l ∈ N such that

Ln := ηlLn−1 (4)

satisfies

f(x(n+1)) ≤ f(x(n))+∇f(x(n))T (x(n+1) − x(n))

+
Ln
2
‖x(n+1) − x(n)‖22.

Alternatively, instead of Ln−1, use

‖∇f(x(n−1))−∇f(x̂)‖2
‖x(n−1) − x̂‖2

≤ Ln

with x̂ = proxg(x
(n−1) −∇f(x(n−1))) as starting point for Equation (4).

Implementation – Finding αn and βn

David Stutz | June 2, 2016 23/34

Similar to initialization, fix J,K � 100 and compute

β(j)
n :=

bn − 1

bn − 1
2

− j

J

bn − 1

bn − 1
2

with bn :=
δn−1 + Ln

2

c2 + Ln
2

and j = 0, . . . , J,

α(k)
n := an − k

an − c1

K
with an :=

2(1− βn)

(Ln + 2c2)
and k = 1, . . . ,K

until β(j)
n and α(k)

n satisfy

δn :=
1

α
(k)
n

− Ln
2
− β

(j)
n

2α
(k)
n

≥ γn :=
1

α
(k)
n

− Ln
2
− β

(j)
n

α
(k)
n

≥ c2

and

δn ≤ δn−1.

Implementation – Finding αn and βn (cont’d)

David Stutz | June 2, 2016 24/34

Similar to initialization, fix J,K � 100 and compute

β(j)
n :=

bn − 1

bn − 1
2

− j

J

bn − 1

bn − 1
2

with bn :=
δn−1 + Ln

2

c2 + Ln
2

and j = 0, . . . , J,

α(k)
n := an − k

an − c1

K
with an :=

2(1− βn)

(Ln + 2c2)
and k = 1, . . . ,K

until β(j)
n and α(k)

n satisfy

δn :=
1

α
(k)
n

− Ln
2
− β

(j)
n

2α
(k)
n

≥ γn :=
1

α
(k)
n

− Ln
2
− β

(j)
n

α
(k)
n

≥ c2

and

δn ≤ δn−1.

Implementation – Finding αn and βn (cont’d)

David Stutz | June 2, 2016 24/34

Similar to initialization, fix J,K � 100 and compute

β(j)
n :=

bn − 1

bn − 1
2

− j

J

bn − 1

bn − 1
2

with bn :=
δn−1 + Ln

2

c2 + Ln
2

and j = 0, . . . , J,

α(k)
n := an − k

an − c1

K
with an :=

2(1− βn)

(Ln + 2c2)
and k = 1, . . . ,K

until β(j)
n and α(k)

n satisfy

δn :=
1

α
(k)
n

− Ln
2
− β

(j)
n

2α
(k)
n

≥ γn :=
1

α
(k)
n

− Ln
2
− β

(j)
n

α
(k)
n

≥ c2

and

δn ≤ δn−1.

Implementation – Finding αn and βn (cont’d)

David Stutz | June 2, 2016 24/34

Similar to initialization, fix J,K � 100 and compute

β(j)
n :=

bn − 1

bn − 1
2

− j

J

bn − 1

bn − 1
2

with bn :=
δn−1 + Ln

2

c2 + Ln
2

and j = 0, . . . , J,

α(k)
n := an − k

an − c1

K
with an :=

2(1− βn)

(Ln + 2c2)
and k = 1, . . . ,K

until β(j)
n and α(k)

n satisfy

δn :=
1

α
(k)
n

− Ln
2
− β

(j)
n

2α
(k)
n

≥ γn :=
1

α
(k)
n

− Ln
2
− β

(j)
n

α
(k)
n

≥ c2

and

δn ≤ δn−1.

Implementation – Finding αn and βn (cont’d)

David Stutz | June 2, 2016 24/34

1 Problem

2 Related Work

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Table of Contents

David Stutz | June 2, 2016 25/34

Given a noisy image u(0) : Ω = [0, 1]2 → [0, 1], minimize

h(u;u(0), λ) =

∫
Ω
ρ1(u(x)− u(0)(x))dx+ λ

∫
Ω
ρ2(‖∇u(x)‖2)dx

with

ρ1,abs = |x| and ρ1,sqr(x) = x2;

ρ2(x) = log

(
1 +

x2

σ2

)
.

ρ1,sqr and ρ2 are differentiable; the proximal mapping of ρ1,abs(x− x(0)) is

proxαρ1,abs
(x) = max(0, |x| − α) · sign(x)− x(0).

Denoising – Model

David Stutz | June 2, 2016 26/34

Given a noisy image u(0) : Ω = [0, 1]2 → [0, 1], minimize

h(u;u(0), λ) =

∫
Ω
ρ1(u(x)− u(0)(x))dx+ λ

∫
Ω
ρ2(‖∇u(x)‖2)dx

with

ρ1,abs = |x| and ρ1,sqr(x) = x2;

ρ2(x) = log

(
1 +

x2

σ2

)
.

ρ1,sqr and ρ2 are differentiable; the proximal mapping of ρ1,abs(x− x(0)) is

proxαρ1,abs
(x) = max(0, |x| − α) · sign(x)− x(0).

Denoising – Model

David Stutz | June 2, 2016 26/34

Given a noisy image u(0) : Ω = [0, 1]2 → [0, 1], minimize

h(u;u(0), λ) =

∫
Ω
ρ1(u(x)− u(0)(x))dx+ λ

∫
Ω
ρ2(‖∇u(x)‖2)dx

with

ρ1,abs = |x| and ρ1,sqr(x) = x2;

ρ2(x) = log

(
1 +

x2

σ2

)
.

ρ1,sqr and ρ2 are differentiable; the proximal mapping of ρ1,abs(x− x(0)) is

proxαρ1,abs
(x) = max(0, |x| − α) · sign(x)− x(0).

Denoising – Model

David Stutz | June 2, 2016 26/34

Given a noisy image u(0) : Ω = [0, 1]2 → [0, 1], minimize

h(u;u(0), λ) =

∫
Ω
ρ1(u(x)− u(0)(x))dx+ λ

∫
Ω
ρ2(‖∇u(x)‖2)dx

with

ρ1,abs = |x| and ρ1,sqr(x) = x2;

ρ2(x) = log

(
1 +

x2

σ2

)
.

ρ1,sqr and ρ2 are differentiable; the proximal mapping of ρ1,abs(x− x(0)) is

proxαρ1,abs
(x) = max(0, |x| − α) · sign(x)− x(0).

Denoising – Model

David Stutz | June 2, 2016 26/34

ρ1,abs

λ = 0.2

ρ1,sqr

λ = 0.2

ρ1,abs

λ = 0.4

ρ1,sqr

λ = 0.4

ρ1,abs

λ = 0.6

ρ1,sqr

λ = 0.6

ρ1,abs

λ = 0.8

ρ1,sqr

λ = 0.8

Figure: Signal denoising experiment; input signal shown on the left with the
perturbed/noisy signal on its right. Results using ρ1,abs and ρ1,sqr with
λ ∈ {0.2, 0.4, 0.6, 0.8} are shown.

Denoising – Results

David Stutz | June 2, 2016 27/34

0 50 100 150
0

100

200

n

iPiano

h(x(n))

Ln

0 50 100 150
0

0.2

0.4

n

iPiano
αn

βn

∆n

Figure: Convergence of iPiano. Shown is the value of the objective function
h(x(n)) for each iterate x(n), n ≥ 0, as well as the corresponding parameters
αn, βn and Ln. Furthermore, ∆n := ‖x(n) − x(n−1)‖2 is shown.

Denoising – Convergence

David Stutz | June 2, 2016 28/34

Figure: Image denoising experiment; noisy image in the top row, ρ1,abs in the
middle row and ρ1,sqr in the bottom row.

Denoising – Results (cont’d)

David Stutz | June 2, 2016 29/34

Binary segmentation based on an approximation of the Mumford-Shah
model [MS89, She05]; u : [0, 1]2 → [−1, 1]:

hε(u; c+, c−, u
(0), λ) =

∫
Ω

(
9ε‖∇u(x)‖22 +

(1− u(x)2)2

64ε

)
dx

+ λ

∫
Ω

(
1 + u(x)

2

)2

(u(0)(x)− c+)2dx

+ λ

∫
Ω

(
1− u(x)

2

)2

(u(0)(x)− c−)2dx.

(It can be shown, that for ε→ 0,∫
Ω

(
9ε‖∇u(x)‖22 +

(1− u(x)2)2

64ε

)
dx

approximates |u|BV .)

Binary Segmentation – Model

David Stutz | June 2, 2016 30/34

Binary segmentation based on an approximation of the Mumford-Shah
model [MS89, She05]; u : [0, 1]2 → [−1, 1]:

hε(u; c+, c−, u
(0), λ) =

∫
Ω

(
9ε‖∇u(x)‖22 +

(1− u(x)2)2

64ε

)
dx

+ λ

∫
Ω

(
1 + u(x)

2

)2

(u(0)(x)− c+)2dx

+ λ

∫
Ω

(
1− u(x)

2

)2

(u(0)(x)− c−)2dx.

(It can be shown, that for ε→ 0,∫
Ω

(
9ε‖∇u(x)‖22 +

(1− u(x)2)2

64ε

)
dx

approximates |u|BV .)

Binary Segmentation – Model

David Stutz | June 2, 2016 30/34

Binary segmentation based on an approximation of the Mumford-Shah
model [MS89, She05]; u : [0, 1]2 → [−1, 1]:

hε(u; c+, c−, u
(0), λ) =

∫
Ω

(
9ε‖∇u(x)‖22 +

(1− u(x)2)2

64ε

)
dx

+ λ

∫
Ω

(
1 + u(x)

2

)2

(u(0)(x)− c+)2dx

+ λ

∫
Ω

(
1− u(x)

2

)2

(u(0)(x)− c−)2dx.

(It can be shown, that for ε→ 0,∫
Ω

(
9ε‖∇u(x)‖22 +

(1− u(x)2)2

64ε

)
dx

approximates |u|BV .)

Binary Segmentation – Model

David Stutz | June 2, 2016 30/34

Figure: Segmentation results for thresholds τ = −0.2, 0.0, 0.2 and using gsqr;
the foreground segment Sf is depicted in white.

Binary Segmentation – Results (cont’d)

David Stutz | June 2, 2016 31/34

1 Problem

2 Related Work

3 Algorithm

4 Convergence

5 Implementation

6 Applications

7 Conclusion

Table of Contents

David Stutz | June 2, 2016 32/34

We discussed the minimization of composite functions of the form

min
x∈Rd

h(x) = min
n∈Rd

(f(x) + g(x)).

Ochs et al. [OCBP14] proposed the iPiano algorithm to solve this
problem under to following requirements:

– g proper closed convex and lower semi continuous;

– f ∈ C1 with L-Lipschitz continuous ∇f ;

– h coercive and bounded below;

– and Hδn(x(n), x(n−1)) = h(x(n)) + δn∆n satisfying the
Kurdyka-Lojasiewicz property [Loj93, Kur98] at a critical point.

The algorithm can be implemented efficiently in C++ and used to solve
image processing tasks.

Conclusion

David Stutz | June 2, 2016 33/34

We discussed the minimization of composite functions of the form

min
x∈Rd

h(x) = min
n∈Rd

(f(x) + g(x)).

Ochs et al. [OCBP14] proposed the iPiano algorithm to solve this
problem under to following requirements:

– g proper closed convex and lower semi continuous;

– f ∈ C1 with L-Lipschitz continuous ∇f ;

– h coercive and bounded below;

– and Hδn(x(n), x(n−1)) = h(x(n)) + δn∆n satisfying the
Kurdyka-Lojasiewicz property [Loj93, Kur98] at a critical point.

The algorithm can be implemented efficiently in C++ and used to solve
image processing tasks.

Conclusion

David Stutz | June 2, 2016 33/34

We discussed the minimization of composite functions of the form

min
x∈Rd

h(x) = min
n∈Rd

(f(x) + g(x)).

Ochs et al. [OCBP14] proposed the iPiano algorithm to solve this
problem under to following requirements:

– g proper closed convex and lower semi continuous;

– f ∈ C1 with L-Lipschitz continuous ∇f ;

– h coercive and bounded below;

– and Hδn(x(n), x(n−1)) = h(x(n)) + δn∆n satisfying the
Kurdyka-Lojasiewicz property [Loj93, Kur98] at a critical point.

The algorithm can be implemented efficiently in C++ and used to solve
image processing tasks.

Conclusion

David Stutz | June 2, 2016 33/34

Definition

H has the Kurdyka-Lojasiewicz property at point z̃ ∈ dom(∂H) there
exist η ∈ (0,∞], a neighborhood U of z̃, and a continuous concave
function φ : [0, η)→ R+ such that

– φ ∈ C1((0, η)), φ(0) = 0, and for all s ∈ (0, η), φ′(s) > 0;

– and for all z ∈ U ∩ {z ∈ R2d|H(z̃) < H(z) < H(z̃) + η} the
Kurdyka-Lojasiewicz inequality holds:

φ′(H(z)−H(z̃)) inf
ẑ∈∂H(z)

‖ẑ‖2 ≥ 1.

Intuitively, for H ∈ C1, this means that φ has to be steep around critical
points z̃ of H where ∇H is flat.

Appendix – Kurdyka-Lojasiewicz Property

David Stutz | June 2, 2016 34/34

Definition

H has the Kurdyka-Lojasiewicz property at point z̃ ∈ dom(∂H) there
exist η ∈ (0,∞], a neighborhood U of z̃, and a continuous concave
function φ : [0, η)→ R+ such that

– φ ∈ C1((0, η)), φ(0) = 0, and for all s ∈ (0, η), φ′(s) > 0;

– and for all z ∈ U ∩ {z ∈ R2d|H(z̃) < H(z) < H(z̃) + η} the
Kurdyka-Lojasiewicz inequality holds:

φ′(H(z)−H(z̃)) inf
ẑ∈∂H(z)

‖ẑ‖2 ≥ 1.

Intuitively, for H ∈ C1, this means that φ has to be steep around critical
points z̃ of H where ∇H is flat.

Appendix – Kurdyka-Lojasiewicz Property

David Stutz | June 2, 2016 34/34

Krzysztof Kurdyka.
On gradients of functions definable in o-minimal structures.
Annales de l’institut Fourier, 48(3):769–783, 1998.

Stanislas Lojasiewicz.
Sur la géométrie semi- et sous- analytique.
Annales de l’institut Fourier, 43(5):1575–1595, 1993.

David Mumford and Jayant Shah.
Optimal approximations by piecewise smooth functions and
associated variational problems.
Comm. on Pure and Applied Mathematics, 42(5):577–685, 1989.

Peter Ochs, Yunjin Chen, Thomas Brox, and Thomas Pock.
ipiano: Inertial proximal algorithm for nonconvex optimization.
SIAM J. Imaging Sciences, 7(2):1388–1419, 2014.

Jianhong Shen.
Gamma-convergence approximation to piecewise constant
mumford-shah segmentation.

David Stutz | June 2, 2016 34/34

In Advanced Concepts for Intelligent Vision Systems, International
Conference on, volume 3708 of Lecture Notes in Computer Science,
pages 499–506, Antwerpen, Belgium, September 2005. Springer.

David Stutz | June 2, 2016 34/34

	Problem
	Related Work
	Algorithm
	Convergence
	Implementation
	Applications
	Conclusion

