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Abstract. In recent years, superpixel algorithms have become a stan-
dard tool in computer vision and many approaches have been proposed.
However, different evaluation methodologies make direct comparison dif-
ficult. We address this shortcoming with a thorough and fair comparison
of thirteen state-of-the-art superpixel algorithms. To include algorithms
utilizing depth information we present results on both the Berkeley Seg-
mentation Dataset [3] and the NYU Depth Dataset [19]. Based on qual-
itative and quantitative aspects, our work allows to guide algorithm se-
lection by identifying important quality characteristics.

1 Introduction

The term superpixel was introduced by Ren and Malik in 2003 [16] and is used
to describe a group of pixels similar in color or other low-level properties. The
concept of superpixels is motivated by two important aspects [16]: firstly, pixels
do not represent natural entities but are merely a result of discretization; and
secondly, the high number of pixels in large images prevents many algorithms
from being computationally feasible.

Superpixels have actively been used for a wide range of applications such
as classical segmentation [16, 17], semantic segmentation [6], stereo matching
[30] or tracking [26] and numerous superpixel algorithms have been proposed.
However, keeping an overview of the different approaches and their suitability for
specific applications is difficult. This is caused by varying experimental setups
and metrics used for evaluation [12]. Furthermore, only few publications are
devoted to a thorough comparison of existing algorithms.

In this paper, we address this shortcoming and present an extensive compar-
ison of thirteen state-of-the-art superpixel algorithms. In Section 2 we discuss
important related work regarding the comparison of superpixel algorithms and
subsequently we survey existing superpixel algorithms. In Section 3 we discuss
relevant datasets and introduce our benchmark in Section 4. Finally, in Sec-
tion 5, we present a qualitative and quantitative comparison of the superpixel
algorithms, before concluding in Section 6.
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Table 1. Overview of all evaluated superpixel algorithms ordered by year of publica-
tion. In Row 3, we categorize the algorithms in either graph-based approaches (gb) or
gradient ascent approaches (ga) [2]. Furthermore, in Row 4, we note the programming
language of the evaluated implementations as it may influence the runtime reported
in Section 5.2 (M refers to MatLab). We distinguish algorithms offering direct control
over the number of superpixels (Row 5), algorithms providing a compactness parameter
(Row 6) and algorithms using depth information (Row 7).

NC FH QS TP SLIC CIS ERS PB CRS SEEDS TPS DASP VCCS

Ref. [16] [5] [24] [7] [1] [25] [8] [29] [10] [23] [22] [27] [13]

Year 2003 2004 2008 2009 2010 2010 2011 2011 2011 2012 2012 2012 2013

Cat. gb gb ga ga ga gb gb gb ga ga gb ga ga

Impl. C/M C++ C/M C/M C++ C++ C++ C++ C++ C++ C/M C++ C++

Sup. 3 7 7 3 3 3 3 3 3 3 3 3 7

Comp. 7 7 7 7 3 7 7 7 3 7 7 3 3

Depth 7 7 7 7 7 7 7 7 7 7 7 3 3

2 Related Work

There are only few publications devoted to the comparison of existing superpixel
algorithms in a consistent framework: to the best of our knowledge these are [18],
[2] and [12]. However, these publications cannot include several recent algorithms
(for example [23, 13, 27]). Meanwhile, authors tend to include a brief evaluation
intended to show superiority of their proposed superpixel algorithm over selected
existing approaches (for example [8, 25, 23, 23, 27, 13]). However, these results are
not comparable across publications.

2.1 Superpixel Algorithms

Table 1 gives an overview of all evaluated superpixel algorithms. We catego-
rize the algorithms according to criteria we find important for evaluation and
algorithm selection. Roughly, the algorithms can be categorized as either graph-
based approaches or gradient ascent approaches [2]. Furthermore, we distinguish
algorithms offering direct control over the number of superpixels as well as al-
gorithms providing a compactness parameter. Overall, we evaluated thirteen
state-of-the-art superpixel algorithms including three algorithms utilizing depth
information. We also note that there are additional superpixel algorithms [17,
11, 4, 28, 14, 20] for which evaluation was not possible due to the lack of open
source code.

3 Datasets

As popular dataset for image segmentation and contour detection, the Berke-
ley Segmentation Dataset [3], referred to as BSDS500, consists of 500 natural
images of size 482 × 321 (200 training images, 100 validation images, 200 test
images). The provided ground truth segmentations, at least five per image, have
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been obtained from different persons and reflect the difficult nature of image
segmentation.

In contrast to the natural images of the BSDS500, The NYU Depth Dataset
[19], referred to as NYUV2, comprises 1449 images of different indoor scenes (we
chose 200 validation images and 400 test images including most of the scenes).
For all images, pre-processed depth images are provided. As these images have
been undistorted and aligned with the color images, we crop the original images
of size 640 × 480 to 608 × 448 pixels. In addition, following Ren and Bo [15],
we remove small unlabeled regions and combine class and instance labels to
guarantee connected ground truth segments. Overall, difficult lighting conditions
and cluttered scenes contribute to the difficulty of the NYUV2.

4 Benchmark

We use an extended version of the Berkeley Segmentation Benchmark, intro-
duced by Arbeláez et al. [3], to evaluate superpixel algorithms. Among other
metrics, the benchmark includes Boundary Recall (Rec) and Undersegmenta-
tion Error (UE) [7, 12] as primary metrics to assess superpixel algorithms.

Boundary Recall is part of the Precision-Recall Framework [9] originally used
to evaluate contour detectors. Treating region boundaries of a superpixel segmen-
tation as contours, Boundary Recall represents the fraction of boundary pixels
correctly detected by the superpixel algorithm. As superpixels are expected to
adhere to boundaries, high Boundary Recall is desirable.

Undersegmentation Error, as originally proposed by Levinshtein et al. [7],
measures the “bleeding” of superpixels with respect to a ground truth segmen-
tation. We implemented the corrected formulation proposed by Neubert and
Protzel [12] computing an error in the range of [0, 1]. Low Undersegmentation
Error is preferable as each superpixel is expected to cover at most one ground
truth segment.

5 Evaluation and Comparison

In addition to the superpixel algorithms introduced in Section 2.1, we include
a 2D and 3D re-implementation of SEEDS, called reSEEDS and reSEEDS3D,
respectively. Further details can be found in [21].

Our comparison is split into a qualitative part, examining the visual quality
of the generated superpixels, and a quantitative part based on Boundary Recall,
Undersegmentation Error and runtime. To ensure a fair comparison, the param-
eters have been chosen to jointly optimize Boundary Recall and Undersegmen-
tation Error using discrete grid search. Parameter optimization was performed
on the validation sets while comparison is performed on the test sets.

5.1 Qualitative

The visual appearance of superpixels is determined by compactness and regu-
larity – properties that may also have strong influence on possible applications.
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Fig. 1. Superpixel segmentations obtained for an example image from the BSDS500.
From left to right, top to bottom: original image, NC, FH, QS, TP, SLIC, CIS, ERS,
PB, SEEDS, reSEEDS, TPS and CRS. Approximately 600 superpixels have been gen-
erated for the whole image.

Figures 1 and 2 present results on the BSDS500 and NYUV2, respectively, ob-
tained after parameter optimization. We note that these images are intended to
be as representative as possible, however, generated superpixel segmentations
may vary across different images.

Both FH and QS produce highly irregular superpixels. However, they are
able to capture small details and all important boundaries. Furthermore, note
that QS produces more superpixels in highly textured areas. In contrast, TP gen-
erates highly compact superpixels at the expense of missing several boundaries.
CRS and ERS produce irregular superpixels with good boundary adherence and
are more visually appealing than superpixels generated by FH or QS. While PB
shows reasonable results on the BSDS500, producing irregular and small su-
perpixels, results on the NYUV2 appear to be unfinished and of poor quality.
Similarly, TPS produces unfinished superpixel segmentations on both datasets.
Both SLIC and CRS provide a compactness parameter which has been traded off
for boundary adherence during parameter optimization. Thus, the generated su-
perpixels are irregular and not compact, especially on the NYUV2. The original
implementation of SEEDS produces highly irregular superpixels capturing the
majority of boundaries. Our implementation, reSEEDS, shows similar behavior.

Intuitively, depth information allows to adapt superpixels to the underlying
three-dimensional structure. While DASP is able to resemble this structure at

Fig. 2. Superpixel segmentations obtained for an example image from the NYUV2.
From left to right, top to bottom: original image, NC, FH, QS, TP, SLIC, CIS, ERS,
PB, SEEDS, reSEEDS, TPS, CRS, reSEEDS3D, DASP, VCCS. Note that reSEEDS3D,
DASP and VCCS use depth information for superpixel segmentation. Approximately
840 superpixels have been computed for the whole image.
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Fig. 3. Comparison of thirteen superpixel algorithms with respect to Boundary Recall
(Rec) and Undersegmentation Error (UE) on the test sets of the BSDS500 (left) and
the NYUV2 (right). Note that for visualization purposes only a small part of the range
of both metrics is shown.

least in parts, VCCS produces highly irregular superpixels. This may be due
to the fact that DASP adapts the number of superpixels according to depth,
whereas VCCS directly operates within the point cloud and merely the back
projection is shown. As result, the generated superpixels occur irregular and
voxelization (see [13]) is still visible. Compared to DASP, reSEEDS3D generates
slightly less irregular superpixels with better boundary adherence.

5.2 Quantitative

The quantitative comparison is based on Boundary Recall and Undersegmenta-
tion Error, averaged over the test sets, as a function of the number of superpixels.
As shown in Figure 3, FH performs excellent on both datasets and is only outper-
formed by VCCS. However, as VCCS operates within point clouds, these results
are hardly comparable. In addition, FH is closely followed by approaches such as
QS, SLIC, CRS and ERS. Our implementation of SEEDS, reSEEDS, is able to
keep up with FH, while consistently outperforming the original implementation.
Unfortunately, as shown by reSEEDS3D, depth information may not necessar-
ily improve performance. This is supported by the poor performance of DASP.
In addition, our implementation of SEEDS demonstrates that any ranking ex-
tracted from Figure 3 is possibly challenged by revising existing implementations.
This also justifies a qualitative comparison as performed in Section 5.1.

Another important aspect of superpixel algorithms is runtime (measured
using a 64bit machine with Intel Core i7-3770@3.4GHz, 16GB RAM and without
GPU acceleration or multi-threading). Iterative algorithms such as SLIC and
SEEDS may be optimized with respect to runtime by decreasing the number of
iterations. Figure 4 compares these optimized versions to algorithms requiring
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Fig. 4. Comparison of the runtime t in seconds of superpixel algorithms requiring less
than 0.5s per image on the NYUV2. SLIC, SEEDS and reSEEDS may be optimized
with respect to runtime by decreasing the number of iterations. These optimized ver-
sions are indicated by an ∗.

less than 0.5s on the NYUV2 (images of size 608× 448). The optimized versions
of SLIC, SEEDS and reSEEDS, indicated by an ∗, show significantly reduced
runtime while providing similar performance in terms of Boundary Recall and
Undersegmentation Error. The drop in performance is lowest for reSEEDS –
Boundary Recall even increases – which simultaneously shows the lowest runtime
with ∼ 0.05s per image. We also observe low runtimes for FH and DASP.

6 Conclusion

Several algorithms provide both excellent performance and low runtime. Fur-
thermore, including additional information such as depth may not necessarily
improve performance. Therefore, additional criteria are necessary to asses su-
perpixel algorithms. In particular, we find that visual quality, runtime and the
provided parameters are among these criteria. Clearly, visual appearance is dif-
ficult to measure appropriately, however, it may have serious impact on possible
applications. Furthermore, low runtime is desirable when using superpixel algo-
rithms as pre-processing step, especially in real-time settings. Finally, parameters
should be interpretable and easy to tune and algorithms providing a compact-
ness parameter are preferable. In addition, as the number of superpixels can
be understood as a lower bound on performance, we prefer algorithms offering
direct control over the number of superpixels.

In conclusion, while many algorithms provide excellent performance with re-
spect to Undersegmentation Error [7, 12] and Boundary Recall [9], they lack con-
trol over the number of superpixels or a compactness parameter. Furthermore,
these impressive results with respect to Boundary Recall and Undersegmenta-
tion Error do not necessarily reflect the perceived visual quality of the generated
superpixel segmentations.
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