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Image retrieval:

Problem. Given a large database of images and a query image, find
images showing the same object or scene.

Originally:
advantage: supports activities, emotions, ...

I Text-based retrieval systems based on manual annotations;
I unpractical for large collections of images.

Today, content-based image retrieval:
I Techniques based on the Bag of Visual Words [SZ03] model.
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Formalization of content-based image retrieval:

Problem. Find K-nearest-neighbors of query z0 in a (large) database
X = {x1, . . . , xN} of image representations.

K = 2, N = 7 •
z0

••

•
•

•
•

•
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Examples for image representations from the “Computer Vision” lecture:
I Histograms;
I Bag of Visual Words [SZ03].
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Intuition: assign local descriptors yl,n of image xn to visual words
ŷ1, . . . , ŷM previously obtained using clustering.

yl,n

ŷm

2.1. Bag of Visual Words
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1. Extract local descriptors Yn for each image xn.
2. Cluster all local descriptors Y =

⋃N
n=1 Yn to obtain visual words

Ŷ = {ŷ1, . . . , ŷM}.

3. Assign each yl,n ∈ Yn to nearest visual word (embedding step):

f(yl,n) =
(
δ(NNŶ (yl,n) = ŷ1), . . .

)
.

4. Count visual word occurrences (aggregation step):

F (Yn) =

L∑
l=1

f(yl,n).
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Intuition: consider the residuals yl,n − ŷm instead of counting visual
words.

yl,n

ŷm

ŷm − yl,n

2.2. Vector of Locally Aggregated Descriptors
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1. Extract and cluster local descriptors.

2. Compute residuals of local descriptors visual words (embedding step):

f(yl,n) =
(
δ(NNŶ (yl,n) = ŷ1)(yl,n − ŷ1), . . .

)
.

3. Aggregate residuals (aggregation step):

F (Yn) =
L∑
l=1

f(yl,n).

4. L2-normalize F (Yn) .
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)
.

3. Aggregate residuals (aggregation step):

F (Yn) =
L∑
l=1

f(yl,n).

4. L2-normalize F (Yn) .

2.2. Vector of Locally Aggregated Descriptors

David Stutz | July 22, 2015 10/48



Intuition: soft-assign local descriptors to visual words.

yl,n

ŷm

ŷm′

2.3. Sparse-Coded Features
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1. Extract and cluster local descriptors.

2. Compute sparse codes (embedding step):

f(yl,n) = argmin
rl

‖yl,n − Ŷ rl‖22 + λ‖rl‖1.

contains ŷm as columns

3. Pool sparse codes (aggregation step):

F (Yn) =

(
max
1≤l≤L

{f1(yl,n)}, . . .
)

first component of f(yl,n)
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Until now: image representation.

Additional aspects of image retrieval:
I compression of image representations;
I efficient indexing and nearest-neighbor search [JDS11];
I query expansion [CPS+07] and spatial verification [PCI+07].

For example, compression can be accomplished using:
I Unsupervised methods, e.g. Principal Component Analysis (PCA);
I or discriminate methods, e.g. Joint Subspace and Classifier Learning

[GRPV12] or Large Margin Dimensionality Reduction [SPVZ13].

discussed later ...
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The prototypical neural network is the L-layer perceptron.

Given input x ∈ RD, layer l = 1 computes for 1 ≤ i ≤ m(l):

x1

...

xD

y
(1)
i

= f
(∑D

j=1w
(1)
i,j xj + w

(1)
i,0

)
e.g. f(z) = 1

1+exp(−z)
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The prototypical neural network is the L-layer perceptron.
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y
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y
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y
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x1

x2

...

xD

y
(1)
1

y
(1)
2

...

y
(1)

m(1)

. . .

. . .

y
(L−1)
1

y
(L−1)
2

...

y
(L−1)

m(L−1)

y
(L)
1

y
(L)
2

...

y
(L)

m(L)

input
1st layer

(L− 1)th layer

output
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Motivation:
I Multi-layer perceptrons do not naturally accept images as input;
I however, spatial information is important.

Solution: convolutional neural networks.

Intuition: apply learned filters on the input image to compute a set of
feature maps.

Repeat: normalize and pool feature maps before applying another set of
learned filters.

Apply a multi-layer perceptron on the obtained (small) feature maps.
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General architecture:

convolutional layer – contrast normalization layer – pooling layer

input image
feature maps

layer l = 1

3.2. Convolutional Layer
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General architecture:

convolutional layer – contrast normalization layer – pooling layer

feature map
layer (l − 1)

feature maps
layer l
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General architecture:

convolutional layer – contrast normalization layer – pooling layer

Given m(l−1)
1 feature maps Y (l−1)

j , layer l computes

discrete convolution

Y
(l)
i = f

B(l)
i +

m
(l−1)
1∑
j=1

W
(l)
i,j ∗ Y

(l−1)
j

 , 1 ≤ i ≤ m(l)
1

where B(1)
i are bias matrices and W (1)

i,j are filters.

3.2. Convolutional Layer

David Stutz | July 22, 2015 21/48



General architecture:

convolutional layer – contrast normalization layer – pooling layer

feature maps
layer (l − 1)

ensure that values
are comparable

3.2. Local Contrast Normalization Layer
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General architecture:

convolutional layer – contrast normalization layer – pooling layer

Given m(l−1)
1 feature maps Y (l−1)

j , brightness normalization [KSH12]
computes

(
Y

(l)
i

)
r,s

=

(
Y

(l−1)
i

)
r,s

1 +
∑m

(l−1)
1

j=1

(
Y

(l−1)
j

)2
r,s

, 1 ≤ i ≤ m(l)
1 = m

(l−1)
1 .
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General architecture:

convolutional layer – contrast normalization layer – pooling layer

feature maps
layer (l − 1)

feature maps
layer l

3.2. Pooling Layer
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General architecture:

convolutional layer – contrast normalization layer – pooling layer

Given feature maps Y (l−1)
j of size m(l−1)

2 ×m(l−1)
3 , it computes feature

maps Y (l)
i of reduced size by

I computing the average value within (non-overlapping) windows
(average pooling);

I or keeping the maximum value of (non-overlapping) windows (max
pooling).

3.2. Pooling Layer
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input image

convolutional layer

pooling layer

. . .

two-layer perceptron

3.3. Schematic Architecture

David Stutz | July 22, 2015 26/48



Figure : Architecture used by Krizhevsky et al. [KSH12], L = 13.

3.3. ImageNet Architecture “AlexNet”
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For classification, use softmax activation function in layer L:

f(z
(L)
i ) =

exp
(
z
(L)
i

)
∑m(L)

j=1 exp
(
z
(L)
j

) .interpreted as
posteriors

Given a training set {(xn, tn)} with tn = i iff xn belongs to class i,
minimize multinomial loss

all weights
of the network E(W ) = − 1

m(L)

N∑
n=1

log
(
y
(L)
tn

)
using gradient descent.

3.4. Training
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Figure : Back-projection of a single feature activation in the fourth convolutional
layer [ZF14].

4. Neural Codes – Motivation
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Motivation: Intermediate feature activations are rich representations of
image content.

For application in image retrieval, Babenko et al. [BSCL14] use
I layer l = 10: last convolutional layer, including subsequent max

pooling;
I layer l = 11 and l = 12: first and second layer of the three-layer

perceptron.

Two models:
I pre-trained on ImageNet1 (∼ 3.2 million images, > 1000 classes);
I and re-trained on the Landmark dataset (213, 678 images of 672

popular landmarks).

1Available at http://www.image-net.org/.
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layer l = 10

layer l = 11

layer l = 12

Figure : Architecture used by Krizhevsky et al. [KSH12], L = 13.
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Compression using PCA and Large Margin Dimensionality Reduction.

Large Margin Dimensionality Reduction:

1. Match images such that tn,n′ = 1 iff images xn and xn′ are related.

2. Compute linear dimensionality reduction P ∈ RC′×C by minimizing

E(P ) =

N∑
n,n′

max{0, 1− tn,n′
(
b− (xn − xn′)TP TP (xn − xn′)

)
}

large margin condition
using gradient descent.
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Datasets:
I Oxford 5k [PCI+07]: 5, 062 images of eleven different landmarks in

Oxford; 5 queries with ground truth per landmark.
I INRIA Holidays [JDS08]: 1, 491 holiday images with 500 distinct

queries including ground truth.

Figure : Example images from the Oxford 5k dataset showing the All Souls
College of the University of Oxford.

5. Datasets and Metric
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Precision-Recall curves:
I Recall: ratio of true positives to all related images;
I Precision: ratio of true positives to number of retrieved images.
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Oxford 5k Holidays
Fisher Vectors [GRPV12] – 0.774
Vector of Locally Aggregated Descriptors [AZ13] 0.555 0.646
Sparse-Coded Features [GKS13] – 0.767
Triangulation Embedding [JZ14] 0.676 0.771

Pre-Trained on ImageNet
l = 10 0.389 0.69
l = 11 0.435 0.749
l = 12 0.430 0.736

Re-Trained
l = 10 0.387 0.674
l = 11 0.545 0.793
l = 12 0.538 0.764

Table : Mean average precision for the Oxford 5k dataset and the Holidays
dataset.
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Oxford 5k Holidays
Fisher Vectors [GRPV12] – 0.723
Fisher Vectors* [GRPV12] – 0.764
Vector of Locally Aggregated Descriptors [AZ13] 0.448 0.625
Sparse-Coded Features [GKS13] – 0.727
Triangulation Embedding [JZ14] 0.433 0.617

Pre-Trained on ImageNet
l = 11 (PCA) 0.433 0.747
l = 11 (Large-Margin) 0.439 –

Re-Trained
l = 11 (PCA) 0.557 0.789

Table : Mean average precision for the Oxford 5k dataset and the Holidays
dataset using 128 dimensional image representations.
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pre-trained

re-trained

pre-trained

re-trained

Figure : Qualitative examples provided by Babenko et al. [BSCL14]: left-most
image is the query; correctly retrieved images are marked.

5. Experiments – Examples
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Notes on Experiments:
I no experiments using Large Margin Dimensionality Reduction on the

re-trained model;
I and the results for state-of-the-art approaches are taken from the

corresponding publications.

Conclusion:
I fully learned features are interesting alternative to hand-crafted

features;
I and convolutional neural networks may be explicitly trained for the

image retrieval task.
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Summary and takeaways:
1. State-of-the-art image retrieval techniques aggregate local

descriptors:
I Bag of Visual Words [SZ03];
I Vector of Locally Aggregated Gradients [AZ13];
I Sparse-Coded Features [GKS13].

2. Convolutional neural networks are powerful, but complex models for
classification.

I Excellent performance on ImageNet;
I but difficult to train or implement.

3. Intermediate feature activations of convolutional neural networks offer
rich representations.
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For large Y , k-means clustering may be infeasible:
I hierarchical k-means [NS06];
I or approximate k-means [PCI+07].

Burstiness, that is single large components can strongly affect
performance [AZ13]:
I term frequency, inverse document frequency weighting;
I or component-wise square root and L2 normalization.

A.1. Bag of Visual Words – Discussion
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Remember, embedding step:

f(yl,n) =
(
δ(NNŶ (yl,n) = ŷ1)(yl,n − ŷ1), . . .

)
,

and aggregation step:

F (Yn) =

L∑
l=1

f(yl,n).

Further normalization techniques:
I power-law normalization (usually, α = 0.5):

Fm(Yn) = sign (Fm(Yn)) |Fm(Yn)|α ;

I intra-normalization: L2-normalize sum of residuals for each visual
word independently.

A.2. Vector of Locally Aggregated Descriptors
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Training with gradient descent, in iteration [t+ 1] compute

W [t+ 1] =W [t]− γ∇E(W [t])

with learning rate γ.

In practice:
I Compute ∇E(W [t]) in O(|W |) using Error Backpropagation.
I Add a regularizer of the form

Ê(W ) = E(W ) + λ‖W‖1.

I Use dropout [HSK+12] and stochastic gradient descent.

B. Training in Practice
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Figure : Back-projection of a single feature activation in layer l = 3 [ZF14]2.

2Note that the architecture used by Zeiler et al. [ZF14] does not exactly match the
architecture presented previously.

C. Neural Codes – Motivation
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Figure : Computed image to maximize posterior for classes “goose” (left) and
“husky” (right) [SVZ13].

C. Neural Codes – Motivation
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Unfortunately, Babenko et al. do not provide source code to reproduce
their experiments.

However, you can try other state-of-the-art approaches:
I Oxford 5k dataset (including evaluation script):

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/;
I SIFT, Vector of Locally Aggregated Descriptors and Fisher Vectors

[PD07] are implemented in the VLFeat library:
http://www.vlfeat.org/overview/encodings.html;

... or try to use convolutional neural networks, for example using
I Caffe: http://caffe.berkeleyvision.org/.

D. Try it out ...
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