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Convolutional networks represent specialized networks for application in
computer vision:

I they accept images as raw input (preserving spatial information),
I and build up (learn) a hierarchy of features (no hand-crafted features

necessary).

Problem: Internal workings of convolutional networks not well
understood ...

I Unsatisfactory state for evaluation and research!

Idea: Visualize feature activations within the network ...
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A multilayer perceptron represents an adaptable model y(·, w) able to
map D-dimensional input to C-dimensional output:

y(·, w) : RD → RC , x 7→ y(x,w) =

y1(x,w)
...

yC(x,w)

 . (1)

In general, a (L+ 1)-layer perceptron consists of (L+ 1) layers, each
layer l computing linear combinations of the previous layer (l − 1) (or the
input).
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On input x ∈ RD, layer l = 1 computes a vector y(1) := (y
(1)
1 , . . . , y

(1)

m(1))
where

y
(1)
i = f

(
z
(1)
i

)
with z(1)i =

D∑
j=1

w
(1)
i,j xj + w

(1)
i,0 .

ith component is called “unit i”

(2)

where f is called activation function and w(1)
i,j are adjustable weights.
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What does this mean?

Layer l = 1 computes linear combinations of the input and applies an
(non-linear) activation function ...

The first layer can be interpreted as generalized linear model:

y
(1)
i = f

((
w

(1)
i

)T
x+ w

(1)
i,0

)
. (3)

Idea: Recursively apply L additional layers on the output y(1) of the first
layer.

Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons – First Layer

David Stutz | July 24th, 2014 8/53



In general, layer l computes a vector y(l) := (y
(l)
1 , . . . , y

(l)

m(l)) as follows:

y
(l)
i = f

(
z
(l)
i

)
with z(l)i =

m(l−1)∑
j=1

w
(l)
i,jy

(l−1)
j + w

(l)
i,0. (4)

Thus, layer l computes linear combinations of layer (l − 1) and applies
an activation function ...
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Layer (L+ 1) is called output layer because it computes the output of the
multilayer perceptron:

y(x,w) =

y1(x,w)
...

yC(x,w)

 :=

y
(L+1)
1

...
y
(L+1)
C

 = y(L+1) (5)

where C = m(L+1) is the number of output dimensions.
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1
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How to choose the activation function f in each layer?

I Non-linear activation functions will increase the expressive power:
Multilayer perceptrons with L+ 1 ≥ 2 are universal
approximators [HSW89]!

I Depending on the application: For classification we may want to
interpret the output as posterior probabilities:

yi(x,w)
!

= p(c = i|x) (6)

where c denotes the random variable for the class.

Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions – Notions

David Stutz | July 24th, 2014 12/53



How to choose the activation function f in each layer?

I Non-linear activation functions will increase the expressive power:
Multilayer perceptrons with L+ 1 ≥ 2 are universal
approximators [HSW89]!

I Depending on the application: For classification we may want to
interpret the output as posterior probabilities:

yi(x,w)
!

= p(c = i|x) (6)

where c denotes the random variable for the class.

Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions – Notions

David Stutz | July 24th, 2014 12/53



Usually the activation function is chosen to be the logistic sigmoid:

σ(z) =
1

1 + exp(−z)

−2 0 2
0

1

z

σ
(z

)

which is non-linear, monotonic and differentiable.
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Alternatively, the hyperbolic tangent is used frequently:

tanh(z). (7)

For classification with C > 1 classes, layer (L+ 1) uses the softmax
activation function:

y
(L+1)
i = σ(z(L+1), i) =

exp(z
(L+1)
i )∑C

k=1 exp(z
(L+1)
k )

. (8)

Then, the output can be interpreted as posterior probabilities.
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By now, we have a general model y(·, w) depending on W weights.

Idea: Learn the weights to perform

I regression,
I or classification.

We focus on classification.
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Given a training set

US = {(xn, tn) : 1 ≤ n ≤ N},

C classes:
1-of-C coding scheme

(9)

learn the mapping represented by US ...

by minimizing the squared error

E(w) =

N∑
n=1

En(w) =

N∑
n=1

C∑
i=1

(yi(xn, w)− tn,i)2 (10)

using iterative optimization.
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We distinguish ...

Stochastic Training A training sample (xn, tn) is chosen at random, and
the weights w are updated to minimize En(w).

Batch and Mini-Batch Training A set M ⊆ {1, . . . , N} of training
samples is chosen and the weights w are updated based
on the cumulative error EM (w) =

∑
n∈M En(w).

Of course, online training is possible, as well.
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Problem: How to minimize En(w) (stochastic training)?

I En(w) may be highly non-linear with many poor local minima.

Framework for iterative optimization: Let ...

I w[0] be an initial guess for the weights (several initialization
techniques are available),

I and w[t] be the weights at iteration t.

In iteration [t+ 1], choose a weight update ∆w[t] and set

w[t+ 1] = w[t] + ∆w[t] (11)
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Remember:

Gradient descent minimizes the error En(w) by taking steps in the
direction of the negative gradient:

∆w[t] = −γ ∂En

∂w[t]
(12)

where γ defines the step size.

Neural Networks and Network Training - Network Training

Gradient Descent
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w[0]

w[1]

w[2]

w[3]

w[4]
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Problem: How to evaluate ∂En
∂w[t] in iteration [t+ 1]?

I “Error Backpropagation” allows to evaluate ∂En
∂w[t] in O(W )!

Further details ...

I See the original paper “Learning Representations by
Back-Propagating Errors,” by Rumelhart et al. [RHW86].

Neural Networks and Network Training - Network Training

Error Backpropagation
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Multilayer perceptrons are called deep if they have more than three
layers: L+ 1 > 3.

Motivation: Lower layers can automatically learn a hierarchy of features
or a suitable dimensionality reduction.

I No hand-crafted features necessary anymore!

However, training deep neural networks is considered very difficult!

I Error measure represents a highly non-convex, “potentially
intractable” [EMB+09] optimization problem.
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Possible approaches:

I Different activation functions offer faster learning, for example

max(0, z) or | tanh(z)|; (13)

I unsupervised pre-training can be done layer-wise;
I ...

Further details ...

I See “Learning Deep Architectures for AI,” by Y. Bengio [Ben09] for a
detailed discussion of state-of-the-art approaches to deep learning.
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The multilayer perceptron represents a standard model of neural
networks. They ...

I allow to taylor the architecture (layers, activation functions) to the
problem;

I can be trained using gradient descent and error backpropagation;
I can be used for learning feature hierarchies (deep learning).

Deep learning is considered difficult.

Neural Networks and Network Training - Summary
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Idea: Allow raw image input while preserving the spatial relationship
between pixels.

Tool: Discrete convolution of image I with filter K ∈ R2h1+1×2h2+1 is
defined as

(I ∗K)r,s =

h1∑
u=−h1

h2∑
v=−h2

Ku,vIr+u,s+v (14)

where the filter K is given by

K =

K−h1,−h2 . . . K−h1,h2

... K0,0
...

Kh1,−h2 . . . Kh1,h2

 . (15)

Convolutional Networks - Notions
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Original Convolutional Network [LBD+89] aims to build up a feature
hierarchy by alternating

convolutional layer− non-linearity layer− subsampling layer

convolves the image
with a set of filters

applies activation function subsamples the feature maps

followed by a multilayer perceptron for classification.

Convolutional Networks - Notions

Convolutional Networks – Architectures
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Central part of convolutional networks: convolutional layer.

I Can handle raw image input.

Idea: Apply a set of learned filters to the image in order to obtain a set of
feature maps.

Can be repeated: Apply a different set of filters to the obtained feature
maps to get more complex features:

I Generate a hierarchy of feature maps.

Convolutional Networks - Convolutional Layer
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Let layer l be a convolutional layer.

Input: m(l−1)
1 feature maps Y (l−1)

i of size m(l−1)
2 ×m(l−1)

3 from the
previous layer.

Output: m(l)
1 feature maps of size m(l)

2 ×m
(l)
3 given by

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
i,j ∗ Y

(l−1)
j

feature map i

layer l

(16)

where B(l)
i is called bias matrix and K(l)

i,j are the filters to be learned.

Convolutional Networks - Convolutional Layer

Convolutional Layer
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Notes:

I The size m(l)
2 ×m

(l)
3 of the output feature maps depends on the

definition of discrete convolution (especially how borders are
handled).

I The weights w(l)
i,j are hidden in the bias matrix B(l)

i and the filters K(l)
i,j .

Convolutional Networks - Convolutional Layer
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Let layer l be a non-linearity layer.

Given m(l−1)
1 feature maps, a non-linearity layer applies an activation

function to all these feature maps:

Y
(l)
i = f

(
Y

(l−1)
i

)
(17)

where f operates point-wise.

Usually, f is the hyperbolic tangent.

Layer l computes m(l)
1 = m

(l−1)
1 feature maps unchanged in size

(m(l)
2 = m

(l−1)
2 , m(l)

3 = m
(l−1)
3 ).

Convolutional Networks - Non-Linearity Layer
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Motivation: Incorporate invariance to noise and distortions.

Idea: Subsample the feature maps of the previous layer.

Let layer l be a subsampling and pooling layer.

Given m(l−1)
1 feature maps of size m(l−1)

2 ×m(l−1)
3 , create m(l)

1 = m
(l−1)
1

feature maps of reduced size.

I For example by placing windows at non-overlapping positions within
the feature maps and keeping only the maximum activation per
window.

Convolutional Networks - Subsampling and Pooling Layer
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Remember: A convolutional network alternates

convolutional layer− non-linearity layer− subsampling layer

to build up a hierarchy of feature maps...

and uses a multilayer perceptron for classification.

Further details ...

I LeCun et al. [LKF10] and Jarrett et al. [JKRL09] give a review of
recent architectures.

Convolutional Networks - Architectures

Putting it All Together
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input image

convolutional layer
with non-linearities

subsampling layer

. . .

two-layer perceptron

Convolutional Networks - Architectures

Overall Architecture
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Researchers are constantly coming up with additional types of layers ...

Example 1: Let layer l be a rectification layer.

Given feature maps Y (l−1)
i of the previous layer, a rectification layer

computes

Y
(l)
i =

∣∣∣Y (l−1)
i

∣∣∣ (18)

where the absolute value is computed point-wise.

Experiments show that rectification plays an important role to achieve
good performance.

Convolutional Networks - Architectures
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Example 2:

Local contrast normalization layers aim to enforce local competitiveness
between adjacent feature maps.

ensure that values
are comparable

I There are different implementations available, see Krizhevsky et al.
[KSH12] or LeCun et al. [LKF10].

Convolutional Networks - Architectures

Additional Layers (cont’d)
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A basic convolutional network consists of different types of layers:

I convolutional layers;
I non-linearity layers;
I and subsampling layers.

Researchers are constantly thinking about additional types of layers to
improve learning and performance.

Convolutional Networks - Summary

Summary
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State: Convolutional networks perform well without requiring
hand-crafted features.

I But: Learned feature hierarchy not well understood.

Idea: Visualize feature activations of higher convolutional layers ...

I Feature activations after first convolutional layer can be backprojected
onto the image plane.

Zeiler et al. [ZF13] propose a visualization technique based on
deconvolutional networks.

Understanding Convolutional Networks -
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Deconvolutional networks aim to build up a feature hierarchy ...

I by convolving the input image by a set of filters – like convolutional
networks;

I however, they are fully unsupervised.

Idea: Given an input image (or a set of feature maps), try to reconstruct
the input given the filters and their activations.

Basic component: deconvolutional layer.
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Let layer l be a deconvolutional layer.

Given feature maps Y (l−1)
i of the previous layer, try to reconstruct the

input using the filters and their activations:

Y
(l−1)
i

!
=

m
(l)
1∑

j=1

(
K

(l)
j,i

)T
∗ Y (l)

j . (19)

Deconvolutional layers ...

I are unsupervised by definition;
I need to learn feature activations and filters.

Understanding Convolutional Networks - Deconvolutional Networks
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Deconvolutional networks stack deconvolutional layers and are fully
unsupervised.

Further details ...

I See “Deconvolutional Networks,” by Zeiler et al. [ZKTF10] for details
on how to train deconvolutional networks.

Understanding Convolutional Networks - Deconvolutional Networks
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Here: Deconvolutional layer used for visualization of trained
convolutional network ...

I filters are already learned – no training necessary.

deconvolutional layer

feature activations

feature maps

convolutional layer

input

Understanding Convolutional Networks - Visualization

Deconvolutional Layers for Visualization
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Problem: Subsampling and pooling in higher layers.

Remember: Placing windows at non-overlapping positions within the
feature maps, pooling is accomplished by keeping one activation per
window.

Solution: Remember which pixels of a feature map were kept using so
called “switch variables”.

Understanding Convolutional Networks - Visualization
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unpooling layer

non-linearity layer

deconvolutional layer

feature activations

feature maps

pooling layer

non-linearity layer

convolutional layer

input

switch variables
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How does this look?

Examples in [ZF13]: Given a validation set, backproject a single
activation within a feature map in layer l to analyze which structure
excites this particular feature map.

Layer 1: Filters represent Gabor-like filters (for edge detection).

Layer 2: Filters for corners.

Layers above layer 2 are interesting ...

Understanding Convolutional Networks - Visualization
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(a) Images. (b) Activations.

Figure: Activations of layer 3 backprojected to pixel level [ZF13].
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(a) Images. (b) Activations.

Figure: Activations of layer 3 backprojected to pixel level [ZF13].
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(a) Images. (b) Activations.

Figure: Activations of layer 4 backprojected to pixel level [ZF13].
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(a) Images. (b) Activations.

Figure: Activations of layer 4 backprojected to pixel level [ZF13].
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Convolutional networks perform well in computer vision tasks as they
learn a feature hierarchy.

Internal workings of convolutional networks are not well understood.

I [ZF13] use deconvolutional networks to visualize feature activations;
I this allows to analyze the feature hierarchy and to increase

performance.
I For example by adjusting the filter size and subsampling scheme.
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Thanks for your attention!
Paper available at http://davidstutz.de/

seminar-paper-understanding-convolutional-neural-networks/

Questions?

Conclusion -

The End
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