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Motivation -

Motivation

Convolutional networks represent specialized networks for application in
computer vision:

» they accept images as raw input (preserving spatial information),

» and build up (learn) a hierarchy of features (no hand-crafted features
necessary).
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Motivation -

Motivation

Convolutional networks represent specialized networks for application in
computer vision:

» they accept images as raw input (preserving spatial information),
» and build up (learn) a hierarchy of features (no hand-crafted features
necessary).

Problem: Internal workings of convolutional networks not well
understood ...

» Unsatisfactory state for evaluation and research!

Idea: Visualize feature activations within the network ...
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Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons

A multilayer perceptron represents an adaptable model y(-, w) able to
map D-dimensional input to C-dimensional output:

Y1 (.T, ’LU)
y(w) : RP = RY 2 y(z,w) = : : (1)
yo(z, w)
In general, a (L + 1)-layer perceptron consists of (L + 1) layers, each

layer [ computing linear combinations of the previous layer (I — 1) (or the
input).
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Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons — First Layer

. 1
Oninput 2 € R?, layer | = 1 computes a vector y(!) := (17, ...,y (1))
where

() e Sl all o

\ i!" component is called “unit "

where f is called activation function and w( ) are adjustable weights.
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Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons — First Layer

What does this mean?

Layer [ = 1 computes linear combinations of the input and applies an
(non-linear) activation function ...

The first layer can be interpreted as generalized linear model:

T
y = ((wf)) z+ w%’) - 3)

Idea: Recursively apply L additional layers on the output y(1) of the first
layer.
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Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons — Further Layers

In general, layer I computes a vector 3 := (3" .. ,yq(??u)) as follows:
=1
. - !
W =1 () win )= 3wl vy @
7=1

Thus, layer | computes linear combinations of layer (I — 1) and applies
an activation function ...
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Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons — Output Layer

Layer (L + 1) is called output layer because it computes the output of the
multilayer perceptron:

Y1 (17, w) ygLJrl)
y(z, w) = s = : [=y*= (5)
yo(z,w) gty

where C' = m(Et1) is the number of output dimensions.
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Neural Networks and Network Training - Multilayer Perceptrons

Network Graph
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Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions — Notions

How to choose the activation function f in each layer?

» Non-linear activation functions will increase the expressive power:
Multilayer perceptrons with L + 1 > 2 are universal
approximators [HSW89]!
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Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions — Notions

How to choose the activation function f in each layer?

» Non-linear activation functions will increase the expressive power:
Multilayer perceptrons with L + 1 > 2 are universal
approximators [HSW89]!

» Depending on the application: For classification we may want to
interpret the output as posterior probabilities:

!

yi(z,w) = p(c = i|x) (6)

where ¢ denotes the random variable for the class.
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Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions

Usually the activation function is chosen to be the logistic sigmoid:

which is non-linear, monotonic and differentiable.
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Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions

Alternatively, the hyperbolic tangent is used frequently:

tanh(z). (7)
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Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions

Alternatively, the hyperbolic tangent is used frequently:

tanh(z). (7)

For classification with C' > 1 classes, layer (L + 1) uses the softmax
activation function:

L+1

(L+1) _ '
S exp(z" )

(D = o

Then, the output can be interpreted as posterior probabilities.
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Neural Networks and Network Training - Network Training

Network Training — Notions

By now, we have a general model y(-, w) depending on W weights.
Idea: Learn the weights to perform

> regression,
» or classification.

We focus on classification.
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Neural Networks and Network Training - Network Training

Network Training — Training Set

C classes:
Given a training set v/ 1-of-C coding scheme

Us ={(xpn,ty) : 1 <n < N}, 9)

learn the mapping represented by Ug ...
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Neural Networks and Network Training - Network Training

Network Training — Training Set

C classes:
Given a training set v/ 1-of-C' coding scheme
Us ={(zn,tn) : 1 <n < N}, 9)
learn the mapping represented by Ug ...
by minimizing the squared error
N N C
E(w) = En(w) =YY (yi(wn, w) = tn;)° (10)
n=1 n=1 i=1

using iterative optimization.
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Neural Networks and Network Training - Network Training

Training Protocols

We distinguish ...

Stochastic Training A training sample (x,, t,,) is chosen at random, and
the weights w are updated to minimize E,,(w).
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Neural Networks and Network Training - Network Training

Training Protocols

We distinguish ...

Stochastic Training A training sample (x,, t,,) is chosen at random, and
the weights w are updated to minimize E,,(w).

Batch and Mini-Batch Training A set M C {1,..., N} of training
samples is chosen and the weights w are updated based
on the cumulative error Eys(w) = > cap En(w).
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Neural Networks and Network Training - Network Training

Training Protocols

We distinguish ...

Stochastic Training A training sample (x,, t,,) is chosen at random, and
the weights w are updated to minimize E,,(w).

Batch and Mini-Batch Training A set M C {1,..., N} of training
samples is chosen and the weights w are updated based
on the cumulative error Eys(w) = > cap En(w).

Of course, online training is possible, as well.
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Neural Networks and Network Training - Network Training

lterative Optimization

Problem: How to minimize E,,(w) (stochastic training)?

» E,(w) may be highly non-linear with many poor local minima.
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Neural Networks and Network Training - Network Training

lterative Optimization

Problem: How to minimize E,,(w) (stochastic training)?
» E,(w) may be highly non-linear with many poor local minima.

Framework for iterative optimization: Let ...

» w[0] be an initial guess for the weights (several initialization
techniques are available),

» and wlt] be the weights at iteration ¢.

In iteration [t + 1], choose a weight update Aw]t] and set

wlt + 1] = w[t] + Awlt] (11)
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Neural Networks and Network Training - Network Training

Gradient Descent

Remember:

Gradient descent minimizes the error E,,(w) by taking steps in the
direction of the negative gradient:

where v defines the step size.
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Neural Networks and Network Training - Network Training

Gradient Descent — Visualization
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Neural Networks and Network Training - Network Training

Error Backpropagation

Problem: How to evaluate gf[’;} in iteration [t + 1]?

» “Error Backpropagation” allows to evaluate gwi[”ﬂ in O(W)H!

Further details ...

» See the original paper “Learning Representations by
Back-Propagating Errors,” by Rumelhart et al. [RHW86].
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Neural Networks and Network Training - Deep Learning

Deep Learning

Multilayer perceptrons are called deep if they have more than three
layers: L +1 > 3.

Motivation: Lower layers can automatically learn a hierarchy of features
or a suitable dimensionality reduction.

» No hand-crafted features necessary anymore!
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Neural Networks and Network Training - Deep Learning

Deep Learning

Multilayer perceptrons are called deep if they have more than three
layers: L +1 > 3.

Motivation: Lower layers can automatically learn a hierarchy of features
or a suitable dimensionality reduction.

» No hand-crafted features necessary anymore!

However, training deep neural networks is considered very difficult!

» Error measure represents a highly non-convex, “potentially
intractable” [EMB™09] optimization problem.
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Neural Networks and Network Training - Deep Learning

Approaches to Deep Learning

Possible approaches:

» Different activation functions offer faster learning, for example
max(0,z) or |tanh(z); (13)

» unsupervised pre-training can be done layer-wise;

> .

Further details ...

» See “Learning Deep Architectures for Al,” by Y. Bengio [Ben09] for a
detailed discussion of state-of-the-art approaches to deep learning.
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Neural Networks and Network Training - Summary

Summary

The multilayer perceptron represents a standard model of neural
networks. They ...

» allow to taylor the architecture (layers, activation functions) to the
problem;
» can be trained using gradient descent and error backpropagation;

» can be used for learning feature hierarchies (deep learning).

Deep learning is considered difficult.
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Convolutional Networks - Notions

Convolutional Networks

Idea: Allow raw image input while preserving the spatial relationship
between pixels.
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Convolutional Networks - Notions

Convolutional Networks

Idea: Allow raw image input while preserving the spatial relationship
between pixels.

Tool: Discrete convolution of image I with filter K € R2h1+1x2hat1 g
defined as

h1 ha

([ * K)r,s = Z Z Ku,vIr—i-u,s—i-v (14)

u=—hi v=—ho

where the filter K is given by

K—hl,—}m - K_h17h2
R T (15)
Kh1,*h2 s Kh1,h2
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Convolutional Networks - Notions

Convolutional Networks — Architectures

Original Convolutional Network [LBD*89] aims to build up a feature
hierarchy by alternating

subsamples the feature maps

\

convolutional layer — non-linearity layer — subsampling layer

‘\ convolves the image
with a set of filters

applies activation function \v

followed by a multilayer perceptron for classification.
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Convolutional Networks - Convolutional Layer

Convolutional Layer — Notions

Central part of convolutional networks: convolutional layer.
» Can handle raw image input.

Idea: Apply a set of learned filters to the image in order to obtain a set of
feature maps.

Can be repeated: Apply a different set of filters to the obtained feature
maps to get more complex features:

» Generate a hierarchy of feature maps.

David Stutz | July 24th, 2014 28/53




Convolutional Networks - Convolutional Layer

Convolutional Layer

Let layer [ be a convolutional layer.

(-1 (-1

(=1 of size my X mg  from the

Input: mgl_l) feature maps Y,

previous layer.

Output: mgl) feature maps of size mg) X mgl) given by

layer [
/- m{—V

1
v =B+ 37 Ky (16)
j=1

\ feature map i

where B is called bias matrix and Kflj) are the filters to be learned.

[
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Convolutional Networks - Convolutional Layer

Convolutional Layer — Notes

Notes:

» The size mg) X mgl) of the output feature maps depends on the

definition of discrete convolution (especially how borders are
handled).

» The weights wY are hidden in the bias matrix B and the filters K"

4,3 ( (V
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Convolutional Networks - Non-Linearity Layer

Non-Linearity Layer

Let layer [ be a non-linearity layer.

Given mgl_l) feature maps, a non-linearity layer applies an activation

function to all these feature maps:

Y;(l) — f (Y;(l—l)) (17)

where f operates point-wise.

Usually, f is the hyperbolic tangent.

Layer [ computes mgl) = mgl_l) feature maps unchanged in size
o _ =1 0 _ (-1
(my my ,ms’ =mg ).
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Convolutional Networks - Subsampling and Pooling Layer

Subsampling and Pooling Layer

Motivation: Incorporate invariance to noise and distortions.
Idea: Subsample the feature maps of the previous layer.

Let layer [ be a subsampling and pooling layer.
Given mg Y feature maps of size m(l Y x mgl Y create mgl) = mglfl)
feature maps of reduced size.

» For example by placing windows at non-overlapping positions within
the feature maps and keeping only the maximum activation per
window.
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Convolutional Networks - Architectures

Putting it All Together

Remember: A convolutional network alternates

convolutional layer — non-linearity layer — subsampling layer
to build up a hierarchy of feature maps...
and uses a multilayer perceptron for classification.

Further details ...

» LeCun et al. [LKF10] and Jarrett et al. [JKRLO9] give a review of
recent architectures.
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Convolutional Networks - Architectures

Overall Architecture

convolutional layer
with non-linearities

IV

input image subsampling layer

two-layer perceptron
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Convolutional Networks - Architectures

Additional Layers

Researchers are constantly coming up with additional types of layers ...
Example 1: Let layer [ be a rectification layer.

Given feature maps Yi(l_l) of the previous layer, a rectification layer
computes

v _

2 (2

Y(H)‘ (18)

where the absolute value is computed point-wise.

Experiments show that rectification plays an important role to achieve
good performance.
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Convolutional Networks - Architectures

Additional Layers (cont'd)

Example 2:

Local contrast normalization layers aim to enforce local competitiveness
between adjacent feature maps.

ensure that values
are comparable

» There are different implementations available, see Krizhevsky et al.
[KSH12] or LeCun et al. [LKF10].
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Convolutional Networks - Summary

Summary

A basic convolutional network consists of different types of layers:

» convolutional layers;
» non-linearity layers;
» and subsampling layers.

Researchers are constantly thinking about additional types of layers to
improve learning and performance.
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Understanding Convolutional Networks -

Understanding Convolutional Networks

State: Convolutional networks perform well without requiring
hand-crafted features.

» But: Learned feature hierarchy not well understood.
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Understanding Convolutional Networks -

Understanding Convolutional Networks

State: Convolutional networks perform well without requiring
hand-crafted features.

» But: Learned feature hierarchy not well understood.

Idea: Visualize feature activations of higher convolutional layers ...

» Feature activations after first convolutional layer can be backprojected
onto the image plane.

Zeiler et al. [ZF13] propose a visualization technique based on
deconvolutional networks.
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Understanding Convolutional Networks - Deconvolutional Networks

Deconvolutional Networks

Deconvolutional networks aim to build up a feature hierarchy ...

» by convolving the input image by a set of filters — like convolutional

networks;
» however, they are fully unsupervised.

Idea: Given an input image (or a set of feature maps), try to reconstruct
the input given the filters and their activations.

Basic component: deconvolutional layer.
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Understanding Convolutional Networks - Deconvolutional Networks

Deconvolutional Layer

Let layer [ be a deconvolutional layer.

Given feature maps Yi(lfl) of the previous layer, try to reconstruct the
input using the filters and their activations:

ml®

R (19

j=1

Deconvolutional layers ...

» are unsupervised by definition;
» need to learn feature activations and filters.
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Understanding Convolutional Networks - Deconvolutional Networks

Deconvolutional Networks

Deconvolutional networks stack deconvolutional layers and are fully
unsupervised.

Further details ...

» See “Deconvolutional Networks,” by Zeiler et al. [ZKTF10] for details
on how to train deconvolutional networks.
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Understanding Convolutional Networks - Visualization

Deconvolutional Layers for Visualization

Here: Deconvolutional layer used for visualization of trained
convolutional network ...

» filters are already learned — no training necessary.

feature maps

A

'
deconvolutional layer convolutional layer
! f
feature activations input
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Understanding Convolutional Networks - Visualization

Deconvolutional Layers for Visualization

Problem: Subsampling and pooling in higher layers.

Remember: Placing windows at non-overlapping positions within the
feature maps, pooling is accomplished by keeping one activation per

window.
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Understanding Convolutional Networks - Visualization

Deconvolutional Layers for Visualization

Problem: Subsampling and pooling in higher layers.

Remember: Placing windows at non-overlapping positions within the
feature maps, pooling is accomplished by keeping one activation per
window.

Solution: Remember which pixels of a feature map were kept using so
called “switch variables”.
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Understanding Convolutional Networks - Visualization

Deconvolutional Layers for Visualization

feature maps

switch variables 4
'
unpooling layer pooling layer
non-linearity layer non-linearity layer
deconvolutional layer convolutional layer
feature activations input
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Understanding Convolutional Networks - Visualization

Feature Activations

How does this look?

Examples in [ZF13]: Given a validation set, backproject a single
activation within a feature map in layer [ to analyze which structure
excites this particular feature map.

Layer 1: Filters represent Gabor-like filters (for edge detection).
Layer 2: Filters for corners.

Layers above layer 2 are interesting ...
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Understanding Convolutional Networks - Visualization

Feature Activations (cont'd)

(a) Images. (b) Activations.

Figure: Activations of layer 3 backprojected to pixel level [ZF13].
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Understanding Convolutional Networks - Visualization

Feature Activations (cont'd)

(b) Activations.

Figure: Activations of layer 3 backprojected to pixel level [ZF13].
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Understanding Convolutional Networks - Visualization

Feature Activations (cont'd)

(a) Images. (b) Activations.

Figure: Activations of layer 4 backprojected to pixel level [ZF13].
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Understanding Convolutional Networks - Visualization

Feature Activations (cont'd)

(a) Images. (b) Activations.

Figure: Activations of layer 4 backprojected to pixel level [ZF13].
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Conclusion

Convolutional networks perform well in computer vision tasks as they
learn a feature hierarchy.

Internal workings of convolutional networks are not well understood.

» [ZF13] use deconvolutional networks to visualize feature activations;

» this allows to analyze the feature hierarchy and to increase
performance.

» For example by adjusting the filter size and subsampling scheme.
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The End

Thanks for your attention!

Paper available at http://davidstutz.de/
seminar-paper-understanding-convolutional-neural-networks/

Questions?
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