
Understanding Convolutional Neural
Networks

David Stutz

July 24th, 2014

David Stutz | July 24th, 2014 0/53

Understanding Convolutional Neural Networks

David Stutz | July 24th, 2014 1/53



1 Motivation

2 Neural Networks and Network Training
Multilayer Perceptrons
Network Training
Deep Learning

3 Convolutional Networks

4 Understanding Convolutional Networks
Deconvolutional Networks
Visualization

5 Conclusion

Table of Contents -

Table of Contents

David Stutz | July 24th, 2014 2/53



1 Motivation

2 Neural Networks and Network Training
Multilayer Perceptrons
Network Training
Deep Learning

3 Convolutional Networks

4 Understanding Convolutional Networks
Deconvolutional Networks
Visualization

5 Conclusion

Motivation -

Table of Contents

David Stutz | July 24th, 2014 3/53



Convolutional networks represent specialized networks for application in
computer vision:

I they accept images as raw input (preserving spatial information),
I and build up (learn) a hierarchy of features (no hand-crafted features

necessary).

Problem: Internal workings of convolutional networks not well
understood ...

I Unsatisfactory state for evaluation and research!

Idea: Visualize feature activations within the network ...

Motivation -

Motivation

David Stutz | July 24th, 2014 4/53



Convolutional networks represent specialized networks for application in
computer vision:

I they accept images as raw input (preserving spatial information),
I and build up (learn) a hierarchy of features (no hand-crafted features

necessary).

Problem: Internal workings of convolutional networks not well
understood ...

I Unsatisfactory state for evaluation and research!

Idea: Visualize feature activations within the network ...

Motivation -

Motivation

David Stutz | July 24th, 2014 4/53



1 Motivation

2 Neural Networks and Network Training
Multilayer Perceptrons
Network Training
Deep Learning

3 Convolutional Networks

4 Understanding Convolutional Networks
Deconvolutional Networks
Visualization

5 Conclusion

Neural Networks and Network Training -

Table of Contents

David Stutz | July 24th, 2014 5/53



A multilayer perceptron represents an adaptable model y(·, w) able to
map D-dimensional input to C-dimensional output:

y(·, w) : RD → RC , x 7→ y(x,w) =

y1(x,w)
...

yC(x,w)

 . (1)

In general, a (L+ 1)-layer perceptron consists of (L+ 1) layers, each
layer l computing linear combinations of the previous layer (l − 1) (or the
input).

Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons

David Stutz | July 24th, 2014 6/53



On input x ∈ RD, layer l = 1 computes a vector y(1) := (y
(1)
1 , . . . , y

(1)

m(1))
where

y
(1)
i = f

(
z
(1)
i

)
with z(1)i =

D∑
j=1

w
(1)
i,j xj + w

(1)
i,0 .

ith component is called “unit i”

(2)

where f is called activation function and w(1)
i,j are adjustable weights.

Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons – First Layer

David Stutz | July 24th, 2014 7/53



What does this mean?

Layer l = 1 computes linear combinations of the input and applies an
(non-linear) activation function ...

The first layer can be interpreted as generalized linear model:

y
(1)
i = f

((
w

(1)
i

)T
x+ w

(1)
i,0

)
. (3)

Idea: Recursively apply L additional layers on the output y(1) of the first
layer.

Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons – First Layer

David Stutz | July 24th, 2014 8/53



In general, layer l computes a vector y(l) := (y
(l)
1 , . . . , y

(l)

m(l)) as follows:

y
(l)
i = f

(
z
(l)
i

)
with z(l)i =

m(l−1)∑
j=1

w
(l)
i,jy

(l−1)
j + w

(l)
i,0. (4)

Thus, layer l computes linear combinations of layer (l − 1) and applies
an activation function ...

Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons – Further Layers

David Stutz | July 24th, 2014 9/53



Layer (L+ 1) is called output layer because it computes the output of the
multilayer perceptron:

y(x,w) =

y1(x,w)
...

yC(x,w)

 :=

y
(L+1)
1

...
y
(L+1)
C

 = y(L+1) (5)

where C = m(L+1) is the number of output dimensions.

Neural Networks and Network Training - Multilayer Perceptrons

Multilayer Perceptrons – Output Layer

David Stutz | July 24th, 2014 10/53



x1

x2

...

xD

y
(1)
1

y
(1)
2

...

y
(1)

m(1)

. . .

. . .

y
(L)
1

y
(L)
2

...

y
(L)

m(L)

y
(L+1)
1

y
(L+1)
2

...

y
(L+1)
C

input
1st layer Lth layer output

Neural Networks and Network Training - Multilayer Perceptrons

Network Graph

David Stutz | July 24th, 2014 11/53



How to choose the activation function f in each layer?

I Non-linear activation functions will increase the expressive power:
Multilayer perceptrons with L+ 1 ≥ 2 are universal
approximators [HSW89]!

I Depending on the application: For classification we may want to
interpret the output as posterior probabilities:

yi(x,w)
!

= p(c = i|x) (6)

where c denotes the random variable for the class.

Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions – Notions

David Stutz | July 24th, 2014 12/53



How to choose the activation function f in each layer?

I Non-linear activation functions will increase the expressive power:
Multilayer perceptrons with L+ 1 ≥ 2 are universal
approximators [HSW89]!

I Depending on the application: For classification we may want to
interpret the output as posterior probabilities:

yi(x,w)
!

= p(c = i|x) (6)

where c denotes the random variable for the class.

Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions – Notions

David Stutz | July 24th, 2014 12/53



Usually the activation function is chosen to be the logistic sigmoid:

σ(z) =
1

1 + exp(−z)

−2 0 2
0

1

z

σ
(z

)

which is non-linear, monotonic and differentiable.

Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions

David Stutz | July 24th, 2014 13/53



Alternatively, the hyperbolic tangent is used frequently:

tanh(z). (7)

For classification with C > 1 classes, layer (L+ 1) uses the softmax
activation function:

y
(L+1)
i = σ(z(L+1), i) =

exp(z
(L+1)
i )∑C

k=1 exp(z
(L+1)
k )

. (8)

Then, the output can be interpreted as posterior probabilities.

Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions

David Stutz | July 24th, 2014 14/53



Alternatively, the hyperbolic tangent is used frequently:

tanh(z). (7)

For classification with C > 1 classes, layer (L+ 1) uses the softmax
activation function:

y
(L+1)
i = σ(z(L+1), i) =

exp(z
(L+1)
i )∑C

k=1 exp(z
(L+1)
k )

. (8)

Then, the output can be interpreted as posterior probabilities.

Neural Networks and Network Training - Multilayer Perceptrons

Activation Functions

David Stutz | July 24th, 2014 14/53



By now, we have a general model y(·, w) depending on W weights.

Idea: Learn the weights to perform

I regression,
I or classification.

We focus on classification.

Neural Networks and Network Training - Network Training

Network Training – Notions

David Stutz | July 24th, 2014 15/53



Given a training set

US = {(xn, tn) : 1 ≤ n ≤ N},

C classes:
1-of-C coding scheme

(9)

learn the mapping represented by US ...

by minimizing the squared error

E(w) =

N∑
n=1

En(w) =

N∑
n=1

C∑
i=1

(yi(xn, w)− tn,i)2 (10)

using iterative optimization.

Neural Networks and Network Training - Network Training

Network Training – Training Set

David Stutz | July 24th, 2014 16/53



Given a training set

US = {(xn, tn) : 1 ≤ n ≤ N},

C classes:
1-of-C coding scheme

(9)

learn the mapping represented by US ...

by minimizing the squared error

E(w) =
N∑

n=1

En(w) =
N∑

n=1

C∑
i=1

(yi(xn, w)− tn,i)2 (10)

using iterative optimization.

Neural Networks and Network Training - Network Training

Network Training – Training Set

David Stutz | July 24th, 2014 16/53



We distinguish ...

Stochastic Training A training sample (xn, tn) is chosen at random, and
the weights w are updated to minimize En(w).

Batch and Mini-Batch Training A set M ⊆ {1, . . . , N} of training
samples is chosen and the weights w are updated based
on the cumulative error EM (w) =

∑
n∈M En(w).

Of course, online training is possible, as well.

Neural Networks and Network Training - Network Training

Training Protocols

David Stutz | July 24th, 2014 17/53



We distinguish ...

Stochastic Training A training sample (xn, tn) is chosen at random, and
the weights w are updated to minimize En(w).

Batch and Mini-Batch Training A set M ⊆ {1, . . . , N} of training
samples is chosen and the weights w are updated based
on the cumulative error EM (w) =

∑
n∈M En(w).

Of course, online training is possible, as well.

Neural Networks and Network Training - Network Training

Training Protocols

David Stutz | July 24th, 2014 17/53



We distinguish ...

Stochastic Training A training sample (xn, tn) is chosen at random, and
the weights w are updated to minimize En(w).

Batch and Mini-Batch Training A set M ⊆ {1, . . . , N} of training
samples is chosen and the weights w are updated based
on the cumulative error EM (w) =

∑
n∈M En(w).

Of course, online training is possible, as well.

Neural Networks and Network Training - Network Training

Training Protocols

David Stutz | July 24th, 2014 17/53



Problem: How to minimize En(w) (stochastic training)?

I En(w) may be highly non-linear with many poor local minima.

Framework for iterative optimization: Let ...

I w[0] be an initial guess for the weights (several initialization
techniques are available),

I and w[t] be the weights at iteration t.

In iteration [t+ 1], choose a weight update ∆w[t] and set

w[t+ 1] = w[t] + ∆w[t] (11)

Neural Networks and Network Training - Network Training

Iterative Optimization

David Stutz | July 24th, 2014 18/53



Problem: How to minimize En(w) (stochastic training)?

I En(w) may be highly non-linear with many poor local minima.

Framework for iterative optimization: Let ...

I w[0] be an initial guess for the weights (several initialization
techniques are available),

I and w[t] be the weights at iteration t.

In iteration [t+ 1], choose a weight update ∆w[t] and set

w[t+ 1] = w[t] + ∆w[t] (11)

Neural Networks and Network Training - Network Training

Iterative Optimization

David Stutz | July 24th, 2014 18/53



Remember:

Gradient descent minimizes the error En(w) by taking steps in the
direction of the negative gradient:

∆w[t] = −γ ∂En

∂w[t]
(12)

where γ defines the step size.

Neural Networks and Network Training - Network Training

Gradient Descent

David Stutz | July 24th, 2014 19/53



w[0]

w[1]

w[2]

w[3]

w[4]

Neural Networks and Network Training - Network Training

Gradient Descent – Visualization

David Stutz | July 24th, 2014 20/53



Problem: How to evaluate ∂En
∂w[t] in iteration [t+ 1]?

I “Error Backpropagation” allows to evaluate ∂En
∂w[t] in O(W )!

Further details ...

I See the original paper “Learning Representations by
Back-Propagating Errors,” by Rumelhart et al. [RHW86].

Neural Networks and Network Training - Network Training

Error Backpropagation

David Stutz | July 24th, 2014 21/53



Multilayer perceptrons are called deep if they have more than three
layers: L+ 1 > 3.

Motivation: Lower layers can automatically learn a hierarchy of features
or a suitable dimensionality reduction.

I No hand-crafted features necessary anymore!

However, training deep neural networks is considered very difficult!

I Error measure represents a highly non-convex, “potentially
intractable” [EMB+09] optimization problem.

Neural Networks and Network Training - Deep Learning

Deep Learning

David Stutz | July 24th, 2014 22/53



Multilayer perceptrons are called deep if they have more than three
layers: L+ 1 > 3.

Motivation: Lower layers can automatically learn a hierarchy of features
or a suitable dimensionality reduction.

I No hand-crafted features necessary anymore!

However, training deep neural networks is considered very difficult!

I Error measure represents a highly non-convex, “potentially
intractable” [EMB+09] optimization problem.

Neural Networks and Network Training - Deep Learning

Deep Learning

David Stutz | July 24th, 2014 22/53



Possible approaches:

I Different activation functions offer faster learning, for example

max(0, z) or | tanh(z)|; (13)

I unsupervised pre-training can be done layer-wise;
I ...

Further details ...

I See “Learning Deep Architectures for AI,” by Y. Bengio [Ben09] for a
detailed discussion of state-of-the-art approaches to deep learning.

Neural Networks and Network Training - Deep Learning

Approaches to Deep Learning

David Stutz | July 24th, 2014 23/53



The multilayer perceptron represents a standard model of neural
networks. They ...

I allow to taylor the architecture (layers, activation functions) to the
problem;

I can be trained using gradient descent and error backpropagation;
I can be used for learning feature hierarchies (deep learning).

Deep learning is considered difficult.

Neural Networks and Network Training - Summary

Summary

David Stutz | July 24th, 2014 24/53



1 Motivation

2 Neural Networks and Network Training
Multilayer Perceptrons
Network Training
Deep Learning

3 Convolutional Networks

4 Understanding Convolutional Networks
Deconvolutional Networks
Visualization

5 Conclusion

Convolutional Networks -

Table of Contents

David Stutz | July 24th, 2014 25/53



Idea: Allow raw image input while preserving the spatial relationship
between pixels.

Tool: Discrete convolution of image I with filter K ∈ R2h1+1×2h2+1 is
defined as

(I ∗K)r,s =

h1∑
u=−h1

h2∑
v=−h2

Ku,vIr+u,s+v (14)

where the filter K is given by

K =

K−h1,−h2 . . . K−h1,h2

... K0,0
...

Kh1,−h2 . . . Kh1,h2

 . (15)

Convolutional Networks - Notions

Convolutional Networks

David Stutz | July 24th, 2014 26/53



Idea: Allow raw image input while preserving the spatial relationship
between pixels.

Tool: Discrete convolution of image I with filter K ∈ R2h1+1×2h2+1 is
defined as

(I ∗K)r,s =

h1∑
u=−h1

h2∑
v=−h2

Ku,vIr+u,s+v (14)

where the filter K is given by

K =

K−h1,−h2 . . . K−h1,h2

... K0,0
...

Kh1,−h2 . . . Kh1,h2

 . (15)

Convolutional Networks - Notions

Convolutional Networks

David Stutz | July 24th, 2014 26/53



Original Convolutional Network [LBD+89] aims to build up a feature
hierarchy by alternating

convolutional layer− non-linearity layer− subsampling layer

convolves the image
with a set of filters

applies activation function subsamples the feature maps

followed by a multilayer perceptron for classification.

Convolutional Networks - Notions

Convolutional Networks – Architectures

David Stutz | July 24th, 2014 27/53



Central part of convolutional networks: convolutional layer.

I Can handle raw image input.

Idea: Apply a set of learned filters to the image in order to obtain a set of
feature maps.

Can be repeated: Apply a different set of filters to the obtained feature
maps to get more complex features:

I Generate a hierarchy of feature maps.

Convolutional Networks - Convolutional Layer

Convolutional Layer – Notions

David Stutz | July 24th, 2014 28/53



Let layer l be a convolutional layer.

Input: m(l−1)
1 feature maps Y (l−1)

i of size m(l−1)
2 ×m(l−1)

3 from the
previous layer.

Output: m(l)
1 feature maps of size m(l)

2 ×m
(l)
3 given by

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
i,j ∗ Y

(l−1)
j

feature map i

layer l

(16)

where B(l)
i is called bias matrix and K(l)

i,j are the filters to be learned.

Convolutional Networks - Convolutional Layer

Convolutional Layer

David Stutz | July 24th, 2014 29/53



Notes:

I The size m(l)
2 ×m

(l)
3 of the output feature maps depends on the

definition of discrete convolution (especially how borders are
handled).

I The weights w(l)
i,j are hidden in the bias matrix B(l)

i and the filters K(l)
i,j .

Convolutional Networks - Convolutional Layer

Convolutional Layer – Notes

David Stutz | July 24th, 2014 30/53



Let layer l be a non-linearity layer.

Given m(l−1)
1 feature maps, a non-linearity layer applies an activation

function to all these feature maps:

Y
(l)
i = f

(
Y

(l−1)
i

)
(17)

where f operates point-wise.

Usually, f is the hyperbolic tangent.

Layer l computes m(l)
1 = m

(l−1)
1 feature maps unchanged in size

(m(l)
2 = m

(l−1)
2 , m(l)

3 = m
(l−1)
3 ).

Convolutional Networks - Non-Linearity Layer

Non-Linearity Layer

David Stutz | July 24th, 2014 31/53



Motivation: Incorporate invariance to noise and distortions.

Idea: Subsample the feature maps of the previous layer.

Let layer l be a subsampling and pooling layer.

Given m(l−1)
1 feature maps of size m(l−1)

2 ×m(l−1)
3 , create m(l)

1 = m
(l−1)
1

feature maps of reduced size.

I For example by placing windows at non-overlapping positions within
the feature maps and keeping only the maximum activation per
window.

Convolutional Networks - Subsampling and Pooling Layer

Subsampling and Pooling Layer

David Stutz | July 24th, 2014 32/53



Remember: A convolutional network alternates

convolutional layer− non-linearity layer− subsampling layer

to build up a hierarchy of feature maps...

and uses a multilayer perceptron for classification.

Further details ...

I LeCun et al. [LKF10] and Jarrett et al. [JKRL09] give a review of
recent architectures.

Convolutional Networks - Architectures

Putting it All Together

David Stutz | July 24th, 2014 33/53



input image

convolutional layer
with non-linearities

subsampling layer

. . .

two-layer perceptron

Convolutional Networks - Architectures

Overall Architecture

David Stutz | July 24th, 2014 34/53



Researchers are constantly coming up with additional types of layers ...

Example 1: Let layer l be a rectification layer.

Given feature maps Y (l−1)
i of the previous layer, a rectification layer

computes

Y
(l)
i =

∣∣∣Y (l−1)
i

∣∣∣ (18)

where the absolute value is computed point-wise.

Experiments show that rectification plays an important role to achieve
good performance.

Convolutional Networks - Architectures

Additional Layers

David Stutz | July 24th, 2014 35/53



Example 2:

Local contrast normalization layers aim to enforce local competitiveness
between adjacent feature maps.

ensure that values
are comparable

I There are different implementations available, see Krizhevsky et al.
[KSH12] or LeCun et al. [LKF10].

Convolutional Networks - Architectures

Additional Layers (cont’d)

David Stutz | July 24th, 2014 36/53



A basic convolutional network consists of different types of layers:

I convolutional layers;
I non-linearity layers;
I and subsampling layers.

Researchers are constantly thinking about additional types of layers to
improve learning and performance.

Convolutional Networks - Summary

Summary

David Stutz | July 24th, 2014 37/53



1 Motivation

2 Neural Networks and Network Training
Multilayer Perceptrons
Network Training
Deep Learning

3 Convolutional Networks

4 Understanding Convolutional Networks
Deconvolutional Networks
Visualization

5 Conclusion

Understanding Convolutional Networks -

Table of Contents

David Stutz | July 24th, 2014 38/53



State: Convolutional networks perform well without requiring
hand-crafted features.

I But: Learned feature hierarchy not well understood.

Idea: Visualize feature activations of higher convolutional layers ...

I Feature activations after first convolutional layer can be backprojected
onto the image plane.

Zeiler et al. [ZF13] propose a visualization technique based on
deconvolutional networks.

Understanding Convolutional Networks -

Understanding Convolutional Networks

David Stutz | July 24th, 2014 39/53



State: Convolutional networks perform well without requiring
hand-crafted features.

I But: Learned feature hierarchy not well understood.

Idea: Visualize feature activations of higher convolutional layers ...

I Feature activations after first convolutional layer can be backprojected
onto the image plane.

Zeiler et al. [ZF13] propose a visualization technique based on
deconvolutional networks.

Understanding Convolutional Networks -

Understanding Convolutional Networks

David Stutz | July 24th, 2014 39/53



Deconvolutional networks aim to build up a feature hierarchy ...

I by convolving the input image by a set of filters – like convolutional
networks;

I however, they are fully unsupervised.

Idea: Given an input image (or a set of feature maps), try to reconstruct
the input given the filters and their activations.

Basic component: deconvolutional layer.

Understanding Convolutional Networks - Deconvolutional Networks

Deconvolutional Networks

David Stutz | July 24th, 2014 40/53



Let layer l be a deconvolutional layer.

Given feature maps Y (l−1)
i of the previous layer, try to reconstruct the

input using the filters and their activations:

Y
(l−1)
i

!
=

m
(l)
1∑

j=1

(
K

(l)
j,i

)T
∗ Y (l)

j . (19)

Deconvolutional layers ...

I are unsupervised by definition;
I need to learn feature activations and filters.

Understanding Convolutional Networks - Deconvolutional Networks

Deconvolutional Layer

David Stutz | July 24th, 2014 41/53



Deconvolutional networks stack deconvolutional layers and are fully
unsupervised.

Further details ...

I See “Deconvolutional Networks,” by Zeiler et al. [ZKTF10] for details
on how to train deconvolutional networks.

Understanding Convolutional Networks - Deconvolutional Networks

Deconvolutional Networks

David Stutz | July 24th, 2014 42/53



Here: Deconvolutional layer used for visualization of trained
convolutional network ...

I filters are already learned – no training necessary.

deconvolutional layer

feature activations

feature maps

convolutional layer

input

Understanding Convolutional Networks - Visualization

Deconvolutional Layers for Visualization

David Stutz | July 24th, 2014 43/53



Problem: Subsampling and pooling in higher layers.

Remember: Placing windows at non-overlapping positions within the
feature maps, pooling is accomplished by keeping one activation per
window.

Solution: Remember which pixels of a feature map were kept using so
called “switch variables”.

Understanding Convolutional Networks - Visualization

Deconvolutional Layers for Visualization (cont’d)

David Stutz | July 24th, 2014 44/53



Problem: Subsampling and pooling in higher layers.

Remember: Placing windows at non-overlapping positions within the
feature maps, pooling is accomplished by keeping one activation per
window.

Solution: Remember which pixels of a feature map were kept using so
called “switch variables”.

Understanding Convolutional Networks - Visualization

Deconvolutional Layers for Visualization (cont’d)

David Stutz | July 24th, 2014 44/53



unpooling layer

non-linearity layer

deconvolutional layer

feature activations

feature maps

pooling layer

non-linearity layer

convolutional layer

input

switch variables

Understanding Convolutional Networks - Visualization

Deconvolutional Layers for Visualization (cont’d)

David Stutz | July 24th, 2014 45/53



How does this look?

Examples in [ZF13]: Given a validation set, backproject a single
activation within a feature map in layer l to analyze which structure
excites this particular feature map.

Layer 1: Filters represent Gabor-like filters (for edge detection).

Layer 2: Filters for corners.

Layers above layer 2 are interesting ...

Understanding Convolutional Networks - Visualization

Feature Activations

David Stutz | July 24th, 2014 46/53



(a) Images. (b) Activations.

Figure: Activations of layer 3 backprojected to pixel level [ZF13].

Understanding Convolutional Networks - Visualization

Feature Activations (cont’d)

David Stutz | July 24th, 2014 47/53



(a) Images. (b) Activations.

Figure: Activations of layer 3 backprojected to pixel level [ZF13].

Understanding Convolutional Networks - Visualization

Feature Activations (cont’d)

David Stutz | July 24th, 2014 48/53



(a) Images. (b) Activations.

Figure: Activations of layer 4 backprojected to pixel level [ZF13].

Understanding Convolutional Networks - Visualization

Feature Activations (cont’d)

David Stutz | July 24th, 2014 49/53



(a) Images. (b) Activations.

Figure: Activations of layer 4 backprojected to pixel level [ZF13].

Understanding Convolutional Networks - Visualization

Feature Activations (cont’d)

David Stutz | July 24th, 2014 50/53



1 Motivation

2 Neural Networks and Network Training
Multilayer Perceptrons
Network Training
Deep Learning

3 Convolutional Networks

4 Understanding Convolutional Networks
Deconvolutional Networks
Visualization

5 Conclusion

Conclusion -

Table of Contents

David Stutz | July 24th, 2014 51/53



Convolutional networks perform well in computer vision tasks as they
learn a feature hierarchy.

Internal workings of convolutional networks are not well understood.

I [ZF13] use deconvolutional networks to visualize feature activations;
I this allows to analyze the feature hierarchy and to increase

performance.
I For example by adjusting the filter size and subsampling scheme.

Conclusion -

Conclusion

David Stutz | July 24th, 2014 52/53



Thanks for your attention!
Paper available at http://davidstutz.de/

seminar-paper-understanding-convolutional-neural-networks/

Questions?

Conclusion -

The End

David Stutz | July 24th, 2014 53/53

http://davidstutz.de/seminar-paper-understanding-convolutional-neural-networks/
http://davidstutz.de/seminar-paper-understanding-convolutional-neural-networks/


Y. Bengio.
Learning deep architectures for AI.
Foundations and Trends in Machine Learning, (1):1–127, 2009.

C. Bishop.
Exact calculation of the hessian matrix for the multilayer perceptron.
Neural Computation, 4(4):494–501, 1992.

C. Bishop.
Neural Networks for Pattern Recognition.
Clarendon Press, Oxford, 1995.

C. Bishop.
Pattern Recognition and Machine Learning.
Springer Verlag, New York, 2006.

S. Becker and Y. LeCun.
Improving the convergence of back-propagation learning with
second-order methods.
In Connectionist Models Summer School, pages 29–37, 1989.

David Stutz | July 24th, 2014 53/53



Y. bengio and Y. LeCun.
Scaling learning algorithms towards AI.
In Large Scale Kernel Machines. MIT Press, 2007.

D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and
J. Schmidhuber.
Flexible, high performance convolutional neural networks for image
classification.
In Artificial Intelligence, International Joint Conference, pages
1237–1242, 2011.

D. C. Ciresan, U. Meier, and J. Schmidhuber.
Multi-column deep neural networks for image classification.
Computing Research Repository, abs/1202.2745, 2012.

R. Duda, P. Hart, and D. Stork.
Pattern Classification.
Wiley-Interscience Publication, New York, 2001.

David Stutz | July 24th, 2014 53/53



D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio.
Why does unsupervised pre-training help deep learning?
Journal of Machine Learning Research, 11:625–660, 2010.

D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent.
The difficulty of training deep architectures and the effect of
unsupervised pre-training.
In Artificial Intelligence and Statistics, International Conference on,
pages 153–160, 2009.

D. Forsyth and J. Ponce.
Computer Vision: A Modern Approach.
Prentice Hall Professional Technical Reference, New Jersey, 2002.

X. Glorot and Y. Bengio.
Understanding the difficulty of training deep feedforward neural
networks.
In Artificial Intelligence and Statistics, International Conference on,
pages 249–256, 2010.

David Stutz | July 24th, 2014 53/53



X. Glorot, A. Bordes, and Y. Bengio.
Deep sparse rectifier neural networks.
In Artificial Intelligence and Statistics, International Conference on,
pages 315–323, 2011.

P. Gill, W. Murray, and M. Wright.
Practical optimization.
Academic Press, London, 1981.

S. Haykin.
Neural Networks A Comprehensive Foundation.
Pearson Education, New Delhi, 2005.

G. E. Hinton and S. Osindero.
A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, 2006.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov.

David Stutz | July 24th, 2014 53/53



Improving neural networks by preventing co-adaptation of feature
detectors.
Computing Research Repository, abs/1207.0580, 2012.

K. Hornik, M. Stinchcombe, and H. White.
Multilayer feedforward networks are universal approximators.
Neural Networks, 2(5):359–366, 1989.

K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun.
What is the best multi-stage architecture for object recognition?
In Computer Vision, International Conference on, pages 2146–2153,
2009.

K. Kavukcuoglu, M.’A. Ranzato, and Y. LeCun.
Fast inference in sparse coding algorithms with applications to object
recognition.
Computing Research Repository, abs/1010.3467, 2010.

A. Krizhevsky, I. Sutskever, and G. E. Hinton.
ImageNet classification with deep convolutional neural networks.

David Stutz | July 24th, 2014 53/53



In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

Y. LeCun, L. Buttou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86:2278–2324, 1998.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin.
Exploring strategies for training deep neural networks.
Journal of Machine Learning Research, 10:1–40, 2009.

Y. LeCun.
Generalization and network design strategies.
In Connectionism in Perspective, 1989.

Y. LeCun, K. Kavukvuoglu, and C. Farabet.

David Stutz | July 24th, 2014 53/53



Convolutional networks and applications in vision.
In Circuits and Systems, International Symposium on, pages
253–256, 2010.

S. J. Nowlan and G. E. Hinton.
Simplifying neural networks by soft weight-sharing.
Neural Computation, 4(4):473–493, 1992.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Parallel distributed processing: Explorations in the microstructure of
cognition.
chapter Learning Representations by Back-Propagating Errors,
pages 318–362. MIT Press, Cambridge, 1986.

F. Rosenblatt.
The perceptron: A probabilistic model for information storage and
organization in the brain.
Psychological Review, 65, 1958.

D. Scherer, A. Müller, and S. Behnke.

David Stutz | July 24th, 2014 53/53



Evaluation of pooling operations in convolutional architectures for
object recognition.
In Artificial Neural Networks, International Conference on, pages
92–101, 2010.

P. Y. Simard, D. Steinkraus, and J. C. Platt.
Best practices for convolutional neural networks pplied to visual
document analysis.
In Document Analysis and Recognition, International Conference on,
2003.

M. D. Zeiler and R. Fergus.
Visualizing and understanding convolutional networks.
Computing Research Repository, abs/1311.2901, 2013.

M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus.
Deconvolutional networks.
In Computer Vision and Pattern Recognition, Conference on, pages
2528–2535, 2010.

David Stutz | July 24th, 2014 53/53


	Motivation
	Neural Networks and Network Training
	Multilayer Perceptrons
	Network Training
	Deep Learning

	Convolutional Networks
	Understanding Convolutional Networks
	Deconvolutional Networks
	Visualization

	Conclusion

