Introduction to Neural Networks

David Stutz

david.stutz@rwth-aachen.de

Seminar Selected Topics in WS 2013/2014 – February 10, 2014

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

- 1. Literature
- 2. Motivation
- 3. Artificial Neural Networks
 - (a) The Perceptron
 - (b) Multilayer Perceptrons
 - (c) Expressive Power
- 4. Network Training
 - (a) Parameter Optimization
 - (b) Error Backpropagation
- 5. Regularization
- 6. Pattern Classification
- 7. Conclusion

1. Literature

[Bishop 06] Pattern Recognition and Machine Learning. 2006.

► Chapter 5 gives a short introduction to neural networks in pattern recognition.

[Bishop 95] Neural Networks for Pattern Recognition. 1995.

[Haykin 05] Neural Networks A Comprehensive Foundation. 2005

[Duda & Hart⁺ 01] Pattern Classification. 2001.

► Chapter 6 covers mainly the same aspects as Bishop.

[Rumelhart & Hinton⁺ 86] Learning Representations by Back-Propagating Errors. 1986

► Error backpropagation algorithm.

[Rosenblatt 58] The Perceptron: A Probabilistic Model of Information Storage and Organization in the Brain. 1958

2. Motivation

Theoretically, a state-of-the-art computer is a lot faster than the human brain – comparing the number of operations per second.

Nevertheless, we consider the human brain somewhat smarter than a computer. Why?

► Learning – The human brain learns from experience and prior knowledge to perform new tasks.

How to specify "learning" with respect to computers?

- ► Let *g* be an unknown *target function*.
- ▶ Let $T := \{(x_n, t_n \approx g(x_n)) : 1 \leq n \leq N\}$ be a set of (noisy) training data.
- ► Task: learn a good approximation of g.

Artificial neural networks, simply *neural networks*, try to solve this problem by modeling the structure of the human brain ...

See

► [Haykin 05] for details on how artificial neural networks model the human brain.

3. Artificial Neural Networks – Processing Units

Core component of a neural network: $processing\ unit =$ neuron of the human brain.

A processing unit maps multiple input values onto one output value y:

- $ightharpoonup x_1, \ldots, x_D$ are inputs, e.g. from other processing units within the network.
- $ightharpoonup w_0$ is an external input called *bias*.
- ▶ The *propagation rule* maps all input values onto the actual input z.
- ▶ The activation function is applied to obtain y = f(z).

3. Artificial Neural Networks – Network Graphs

A neural network is a set of interconnected processing units.

We visualize a neural network by means of a *network graph*:

- ► Nodes represent the processing units.
- ► Processing units are interconnected by directed edges.

3. The Perceptron

Introduced by Rosenblatt in [Rosenblatt 58].

The (single-layer) perceptron consists of D input units and C output units.

- ightharpoonup Propagation rule: weighted sum over inputs x_i with weights w_{ij} .
- ▶ Input unit i: single input value $z = x_i$ and identity activation function.
- ▶ Output unit j calculates the output

$$y_j(x,w) = f(z_j) = f\left(\sum_{k=1}^D w_{jk}x_k + w_{j0}
ight) \stackrel{x_0:=1}{=} f\left(\sum_{k=0}^D w_{jk}x_k
ight).$$
 (1)

propagation rule with additional bias $oldsymbol{w}_{j0}$

3. The Perceptron – Network Graph

3. The Perceptron – Activation Functions

Used propagation rule: weighted sum over all inputs.

How to choose the activation function f(z)?

▶ Heaviside function h(z) models the electrical impulse of neurons in the human brain:

$$h(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$
 (2)

3. The Perceptron – Activation Functions

In general we prefer monotonic, differentiable activation functions.

▶ Logistic sigmoid $\sigma(z)$ as differentiable version of the Heaviside function:

$$\sigma(z) = rac{1}{1 + \exp(-z)}$$

► Or its extension for multiple output units, the softmax activation function:

$$\sigma(z,i) = \frac{\exp(z_i)}{\sum_{k=1}^{C} \exp(z_k)}.$$
(3)

See

▶ [Bishop 95] or [Duda & Hart⁺ 01] for more on activation functions and their properties.

3. Multilayer Perceptrons

Idea: Add additional L>0 hidden layers in between the input and output layer.

- $lackbox{ }m^{(l)}$ hidden units in layer (l) with $m^{(0)}:=D$ and $m^{(L+1)}:=C.$
- ightharpoonup Hidden unit i in layer l calculates the output

layer
$$y_i^{(l)}=f\left(\sum_{k=0}^{m^{(l-1)}}w_{ik}y_k^{(l-1)}
ight).$$
 (4)

A multilayer perceptron models a function

$$y(\cdot,w): \mathbb{R}^D \mapsto \mathbb{R}^C, x \mapsto y(x,w) = egin{pmatrix} y_1(x,w) \ dots \ y_C(x,w) \end{pmatrix} = egin{pmatrix} y_1^{(L+1)} \ dots \ y_C^{(L+1)} \end{pmatrix}$$
 (5)

where $\boldsymbol{y}_i^{(L+1)}$ is the output of the i-th output unit.

3. Two-Layer Perceptron – Network Graph

3. Expressive Power – Boolean AND

Which target functions can be modeled using a single-layer perceptron?

► A single-layer perceptron represents a hyperplane in multidimensional space.

Modeling boolean AND with target function $g(x_1,x_2) \in \{0,1\}$.

3. Expressive Power – XOR Problem

Problem: How to model boolean exclusive OR (XOR) using a line in two-dimensional space?

▶ Boolean XOR cannot be modeled using a single-layer perceptron.

Boolean exclusive OR target function.

3. Expressive Power – Conclusion

Do additional hidden layers help?

ightharpoonup Yes. A multilayer perceptron with L>0 additional hidden layers is a universal approximator.

See

- ► [Hornik & Stinchcombe⁺ 89] for details on multilayer perceptrons as universal approximators.
- ▶ [Duda & Hart⁺ 01] for a detailed discussion of the XOR Problem.

4. Network Training

Training a neural network means adjusting the weights to get a good approximation of the target function.

How does a neural network learn?

► Supervised learning: Training set T provides both input values and the corresponding target values:

input value – pattern
$$T:=\{(x_n,t_n):1\leq n\leq N\}.$$
 (6) target value

► Approximation performance of the neural network can be evaluated using a distance measure between approximation and target function.

4. Network Training – Error Measures

Sum-of-squared error function:

function: weight vector k-th component of modeled function y $E(w) = \sum_{n=1}^{N} E_n(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{C} (y_k(x_n, w) - t_{nk})^2.$ (7)

Cross-entropy error function:

$$E(w) = \sum_{n=1}^{N} E_n(w) = -\sum_{n=1}^{N} \sum_{k=1}^{C} t_{nk} \log y_k(x_n, w).$$
 (8)

See

▶ [Bishop 95] for a more detailed discussion of error measures for network training.

4. Network Training – Training Approaches

Idea: Adjust the weights such that the error is minimized.

Stochastic training Randomly choose an input value x_n and update the weights based on the error $E_n(w)$.

Mini-batch training Process a subset $M\subseteq\{1,\ldots,N\}$ of all input values and update the weights based on the error $\sum_{n\in M}E_n(w)$.

Batch training Process all input values x_n , $1 \le n \le N$ and update the weights based on the overall error $E(w) = \sum_{n=1}^{N} E_n(w)$.

4. Parameter Optimization

How to minimize the error E(w)?

Problem: E(w) can be nonlinear and may have multiple local minima.

Iterative optimization algorithms:

- ▶ Let w[0] be a starting vector for the weights.
- ightharpoonup w[t] is the weight vector in the t-th iteration of the optimization algorithm.
- ▶ In iteration [t+1] choose a *weight update* $\Delta w[t]$ and set

$$w[t+1] = w[t] + \Delta w[t]. \tag{9}$$

▶ Different optimization algorithms choose different weight updates.

4. Parameter Optimization – Gradient Descent

Idea: In each iteration take a step in the direction of the negative gradient.

► The direction of the steepest descent.

lacktriangle Weight update $\Delta w[t]$ is given by

$$\Delta w[t] = -\gamma \frac{\partial E}{\partial w[t]}.$$
 (10)

4. Parameter Optimization – Second Order Methods

Gradient descent is a simple and efficient optimization algorithm.

- ightharpoonup Uses first-order information of the error function E.
- ▶ But: often slow convergence and can get stuck in local minima.

Second-order methods offer faster convergence:

- ▶ Conjugate gradients,
- ▶ Newton's method,
- Quasi-Newton methods.

See

- ► [Becker & LeCun 88] for more on accelerating network training with second-order methods.
- ► [Bishop 95] for more details on parameter optimization for network training.
- ► [Gill & Murray⁺ 81] for a general discussion of optimization.

4. Error Backpropagation – Motivation

Summary: We want to minimize the error ${\cal E}(w)$ on the training set ${\cal T}$ to get a good approximation of the target function.

Using gradient descent and stochastic learning, the weight update in iteration [t+1] is given by

$$w[t+1]_{ij}^{(l)} = w[t]_{ij}^{(l)} - \gamma \frac{\partial E_n}{\partial w[t]_{ij}^{(l)}}.$$
(11)

How to evaluate the gradient $rac{\partial E_n}{\partial w_{ij}^{(l)}}$ of the error function with respect to the current weight vector?

Using the chain rule we can write:

$$\frac{\partial E_n}{\partial w_{ij}^{(l)}} = \frac{\partial E_n}{\partial z_i^{(l)}} \underbrace{\frac{\partial z_i^{(l)}}{\partial w_{ij}^{(l)}}}_{=y_i^{(l-1)}}.$$
(12)

4. Error Backpropagation – Step 1

Error backpropagation allows to evaluate $\frac{\partial E_n}{\partial w_{ij}^{(l)}}$ for each weight in $\mathcal{O}(W)$ where W is the total number of weights:

(1) Calculate the *errors* $\delta_i^{(L+1)}$ for the output layer:

$$\delta_i^{(L+1)} := \frac{\partial E_n}{\partial z_i^{(L+1)}} = \frac{\partial E_n}{\partial y_i^{(L+1)}} f'\left(z_i^{(L+1)}\right). \tag{13}$$

- ► The output errors are often easy to calculate.
 - ▶ For example using the sum-of-squared error function and the identity as output activation function:

$$\delta_i^{(L+1)} = rac{\partial \left[rac{1}{2} \sum_{k=1}^C (y_k^{(L+1)} - t_{nk})^2
ight]}{\partial y_i^{(L+1)}} \cdot 1 = y_i(x_n, w) - t_{ni}.$$
 (14)

4. Error Backpropagation – Step 2

(2) Backpropagate the errors $\delta_i^{(L+1)}$ through the network using

$$\delta_i^{(l)} := \frac{\partial E_n}{\partial z_i^{(l)}} = f'\left(z_i^{(l)}\right) \sum_{k=1}^{m^{(l+1)}} w_{ik}^{(l+1)} \delta_k^{(l+1)}. \tag{15}$$

▶ This can be evaluated recursively for each layer after determining the errors $\delta_i^{(L+1)}$ for the output layer.

4. Error Backpropagation – Step 3

(3) Determine the needed derivatives using

$$\frac{\partial E_n}{\partial w_{ij}^{(l)}} = \frac{\partial E_n}{\partial z_i^{(l)}} \frac{\partial z_i^{(l)}}{\partial w_{ij}^{(l)}} = \delta_i^{(l)} y_j^{(l-1)}. \tag{16}$$

Now use the derivatives $\frac{\partial E_n}{\partial w_{ij}^{(l)}}$ to update the weights in each iteration.

▶ In iteration step [t+1] set

$$w[t+1]_{ij}^{(l)} = w[t]_{ij}^{(l)} - \gamma \frac{\partial E_n}{\partial w[t]_{ij}^{(l)}}.$$
(17)

See

- ► [Rumelhart & Hinton⁺ 86], [Duda & Hart⁺ 01] or [Bishop 95] for the derivation of the error backpropagation algorithm.
- ▶ [Bishop 92] for a similar algorithm to evaluate the Hessian of the error function.

5. Regularization – Motivation

Recap: a multilayer perceptron is a universal approximator.

- ► Given enough degrees of freedom, the network is able to memorize the training data.
- ► Memorizing the training data is also referred to as *over-fitting* and usually leads to a poor generalization performance.

How to measure the generalization performance?

► A network has good generalization capabilities if the trained approximation works well for unseen data – the *validation set*.

5. Regularization

Regularization tries to avoid over-fitting.

► Control the complexity of the neural network to avoid memorization of the training data.

How do we control the complexity of the neural network?

► Add a *regularizer* to the error function to influence the complexity during training:

$$\hat{E}(w) = E(w) + \eta P(w). \tag{18}$$

See

▶ [Bishop 06], [Bishop 95] or [Duda & Hart⁺ 01] for more details on regularization.

5. Regularization – L_2 -Regularization

Observation: Large weights within the network tend to result in an approximation with poor generalization capabilities.

► Penalize large weights using a regularizer of the form

$$P(w) = w^T w = ||w||_2^2. (19)$$

▶ Then, the weights tend exponentially to zero – therefore also called weight decay.

6. Pattern Classification

Problem (Classification): Given a D-dimensional input vector x assign it to one of C discrete classes.

▶ The target values t_n of the training set T can be encoded according to the 1-of-C encoding scheme:

$$t_{nk} = 1 \quad \Leftrightarrow \quad x_n \text{ belongs to class } k.$$
 (20)

We interpret the pattern x and the class c as random variables:

- ightharpoonup p(x) probability of observing the pattern x;
- ightharpoonup p(c) probability of observing a pattern belonging to class c;
- ightharpoonup p(c|x) posterior probability for class c after observing pattern x.

the probability we are interested in

6. Pattern Classification – Bayes' Decision Rule

Assume we observed pattern x.

Assume we know the true posterior probabilities p(c|x) for all $1 \le c \le C$.

Which class should the pattern be assigned to?

► Bayes' decision rule minimizes the number of misclassifications:

$$c: \mathbb{R}^D o \{1,\dots,C\}, x \mapsto rg \max_{1 \leq c \leq C} \{p(c|x)\}$$
 . (21) assign pattern x to class c with the highest posterior probability $p(c|x)$

6. Pattern Classification – Model Distribution

Problem: The true posterior probability distribution p(c|x) is unknown.

Possible solution: model the posterior probability distribution by $q_{\theta}(c|x)$.

Model distribution depending on some parameters θ .

- for example the network weights heta=w
- ► Apply the model-based decision rule which is given by

$$c: \mathbb{R}^D
ightarrow \{1, \ldots, C\}, x \mapsto rg \max_{1 \leq c \leq C} \left\{q_{ heta}(c|x)
ight\}.$$
 (22)

6. Pattern Classification – Network Output

Idea: model the posterior probabilities p(c|x) by means of the network output.

► For example using appropriate output activation functions:

$$\sigma(z)=rac{1}{1+\exp(-z)}$$
 for two classes with one output unit such that $y(x,w)=q_{ heta}(c=1|x)$ and $1-y(x,w)=q_{ heta}(c=2|x)$; (23)

$$\sigma(z,i) = rac{\exp(z_i)}{\sum_{k=1}^{C} \exp(z_k)}$$
 for $C>2$ classes with C output units and $y_i(x,w) = q_{ heta}(c=i|x)$.

Then: Use the training set and maximum likelihood estimation to derive error measures to train the network.

7. Conclusion

- ► Artificial neural networks try to learn a specific (unknown) target function using a set of (noisy) training data.
- ► In a multilayer perceptron the processing units are arranged in layers and use the weighted sum propagation rule and arbitrary activation functions.
- ► A multilayer perceptron with at least one hidden layer is a universal approximator.

7. Conclusion - Cont'd

- ► A multilayer perceptron is trained by adjusting its weights to minimize a chosen error function on the given training data.
 - ▶ The error backpropagation algorithm allows to use first-order optimization algorithms.
- ► Regularization tries to avoid over-fitting to give a better generalization performance.
 - ▶ The generalization performance can be measured using a set of unseen data the validation set.
- ► Pattern classification tasks can be solved by modeling the posterior probabilities by means of the network output.
 - ▶ Then, we can apply the model-based decision rule to classify new observations.

Thank you for your attention

David Stutz

david.stutz@rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/

References

- [Becker & LeCun 88] S. Becker, Y. LeCun: Improving the Convergence of Back-Propagation Learning with Second Order Methods. Technical report, University of Toronto, Toronto, 1988.
- [Bishop 92] C.M. Bishop: Exact Calculation of the Hessian Matrix for the Multi-layer Perceptron. *Neural Computation*, Vol. 4, 1992. 25
- [Bishop 95] C.M. Bishop: *Neural Networks for Pattern Recognition*. Clarendon Press, Oxford, 1995. 3, 10, 17, 21, 25, 27
- [Bishop 06] C.M. Bishop: Pattern Recognition and Machine Learning. Springer Verlag, New York, 2006. 3, 27
- [Duda & Hart⁺ 01] R.O. Duda, P.E. Hart, D.G. Stork: *Pattern Classification*. Wiley-Interscience Publication, New York, 2001. 3, 10, 15, 25, 27
- [Gill & Murray⁺ 81] P.E. Gill, W. Murray, M.H. Wright: *Practical optimization*. Academic Press, London, 1981. 21
- [Haykin 05] S. Haykin: *Neural Networks A Comprehensive Foundation*. Pearson Education, New Delhi, 2005. 3, 4

- [Hornik & Stinchcombe⁺ 89] K. Hornik, M. Stinchcombe, H. White: Multilayer Feedforward Networks are Universal Approximators. *Neural Networks*, Vol. 2, 1989. 15
- [Rosenblatt 58] F. Rosenblatt: The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. *Psychological Review*, Vol. 65, 1958. 3, 7
- [Rumelhart & Hinton⁺ 86] D.E. Rumelhart, G.E. Hinton, R.J. Williams: Learning Representations by Back-Propagating Errors. *Nature*, Vol. 323, 1986. 3, 25