
Introduction to Neural Networks

David Stutz
david.stutz@rwth-aachen.de

Seminar Selected Topics in WS 2013/2014 – February 10, 2014

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6

Computer Science Department
RWTH Aachen University, Germany

Stutz – Neural Networks 1 / 35

david.stutz@rwth-aachen.de

Outline

1. Literature

2. Motivation

3. Artificial Neural Networks

(a) The Perceptron
(b) Multilayer Perceptrons
(c) Expressive Power

4. Network Training

(a) Parameter Optimization
(b) Error Backpropagation

5. Regularization

6. Pattern Classification

7. Conclusion

Stutz – Neural Networks 2 / 35

1. Literature

[Bishop 06] Pattern Recognition and Machine Learning. 2006.

I Chapter 5 gives a short introduction to neural networks in pattern recognition.

[Bishop 95] Neural Networks for Pattern Recognition. 1995.

[Haykin 05] Neural Networks A Comprehensive Foundation. 2005

[Duda & Hart+ 01] Pattern Classification. 2001.

I Chapter 6 covers mainly the same aspects as Bishop.

[Rumelhart & Hinton+ 86] Learning Representations by Back-Propagating Errors. 1986

I Error backpropagation algorithm.

[Rosenblatt 58] The Perceptron: A Probabilistic Model of Information Storage and Organization
in the Brain. 1958

Stutz – Neural Networks 3 / 35

2. Motivation

Theoretically, a state-of-the-art computer is a lot faster than the human brain – comparing the
number of operations per second.

Nevertheless, we consider the human brain somewhat smarter than a computer. Why?

I Learning – The human brain learns from experience and prior knowledge to perform new
tasks.

How to specify “learning” with respect to computers?

I Let g be an unknown target function.

I Let T := {(xn, tn ≈ g(xn)) : 1 ≤ n ≤ N} be a set of (noisy) training data.

I Task: learn a good approximation of g.

Artificial neural networks, simply neural networks, try to solve this problem by modeling the
structure of the human brain ...

See

I [Haykin 05] for details on how artificial neural networks model the human brain.

Stutz – Neural Networks 4 / 35

3. Artificial Neural Networks – Processing Units

Core component of a neural network: processing unit = neuron of the human brain.

A processing unit maps multiple input values onto one output value y:

y

w0

x1

...

xD

y := f(z)

A unit is labeled
according to its output

I x1, . . . , xD are inputs, e.g. from other processing units within the network.

I w0 is an external input called bias.

I The propagation rule maps all input values onto the actual input z.

I The activation function is applied to obtain y = f(z).

Stutz – Neural Networks 5 / 35

3. Artificial Neural Networks – Network Graphs

A neural network is a set of interconnected processing units.

We visualize a neural network by means of a network graph:

I Nodes represent the processing units.

I Processing units are interconnected by directed edges.

x1

x2

y1

y2

Output of x1 is
propagated to y1

A unit is labeled
according to its output

Stutz – Neural Networks 6 / 35

3. The Perceptron

Introduced by Rosenblatt in [Rosenblatt 58].

The (single-layer) perceptron consists of D input units and C output units.

I Propagation rule: weighted sum over inputs xi with weights wij.

I Input unit i: single input value z = xi and identity activation function.

I Output unit j calculates the output

yj(x,w) = f(zj) = f

(
D∑
k=1

wjkxk + wj0

)
x0:=1
= f

(
D∑
k=0

wjkxk

)
.

propagation rule with additional bias wj0

(1)

Stutz – Neural Networks 7 / 35

3. The Perceptron – Network Graph

x0

x1

...

xD

y1

...

yC

x1

xD

y1(x,w)

yC(x,w)
Units are arranged
in layers

Additional unit x0 := 1
to include the bias as weight

input layer output layer

Stutz – Neural Networks 8 / 35

3. The Perceptron – Activation Functions

Used propagation rule: weighted sum over all inputs.

How to choose the activation function f(z)?

I Heaviside function h(z) models the electrical impulse of neurons in the human brain:

h(z) =

{
1 if z ≥ 0

0 if z < 0
. (2)

Stutz – Neural Networks 9 / 35

3. The Perceptron – Activation Functions

In general we prefer monotonic, differentiable activation functions.

I Logistic sigmoid σ(z) as differentiable version of the Heaviside function:

σ(z) =
1

1 + exp(−z)

−2 0 2
0

1

z

σ
(z

)

I Or its extension for multiple output units, the softmax activation function:

σ(z, i) =
exp(zi)∑C
k=1 exp(zk)

. (3)

See

I [Bishop 95] or [Duda & Hart+ 01] for more on activation functions and their properties.

Stutz – Neural Networks 10 / 35

3. Multilayer Perceptrons

Idea: Add additional L > 0 hidden layers in between the input and output layer.

I m(l) hidden units in layer (l) with m(0) := D and m(L+1) := C.

I Hidden unit i in layer l calculates the output

y
(l)
i = f

m(l−1)∑
k=0

wiky
(l−1)
k

 .layer

unit

(4)

A multilayer perceptron models a function

y(·, w) : RD 7→ RC, x 7→ y(x,w) =

y1(x,w)
...

yC(x,w)

 =

y
(L+1)
1 ...
y

(L+1)
C

 (5)

where y(L+1)
i is the output of the i-th output unit.

Stutz – Neural Networks 11 / 35

3. Two-Layer Perceptron – Network Graph

x1

xD

x0

x1

...

xD

y
(1)
0

y
(1)
1

...

y
(1)

m(1)

y
(2)
1

...

y
(2)
C

y1(x,w)

yC(x,w)

hidden layer

input layer output layer

Stutz – Neural Networks 12 / 35

3. Expressive Power – Boolean AND

Which target functions can be modeled using a single-layer perceptron?

I A single-layer perceptron represents a hyperplane in multidimensional space.

x2

x1

(0, 0) (1, 0)

(0, 1) (1, 1)

Modeling boolean AND with target function g(x1, x2) ∈ {0, 1}.

Stutz – Neural Networks 13 / 35

3. Expressive Power – XOR Problem

Problem: How to model boolean exclusive OR (XOR) using a line in two-dimensional space?

I Boolean XOR cannot be modeled using a single-layer perceptron.

x2

x1

(0, 0) (1, 0)

(0, 1) (1, 1)

Boolean exclusive OR target function.

Stutz – Neural Networks 14 / 35

3. Expressive Power – Conclusion

Do additional hidden layers help?

I Yes. A multilayer perceptron with L > 0 additional hidden layers is a universal approximator.

See

I [Hornik & Stinchcombe+ 89] for details on multilayer perceptrons as universal approxima-
tors.

I [Duda & Hart+ 01] for a detailed discussion of the XOR Problem.

Stutz – Neural Networks 15 / 35

4. Network Training

Training a neural network means adjusting the weights to get a good approximation of the target
function.

How does a neural network learn?

I Supervised learning: Training set T provides both input values and the corresponding target
values:

T := {(xn, tn) : 1 ≤ n ≤ N}.

input value – pattern

target value

(6)

I Approximation performance of the neural network can be evaluated using a distance mea-
sure between approximation and target function.

Stutz – Neural Networks 16 / 35

4. Network Training – Error Measures

Sum-of-squared error function:

E(w) =
N∑
n=1

En(w) =
1

2

N∑
n=1

C∑
k=1

(yk(xn, w)− tnk)2.

weight vector

k-th entry of tn

k-th component
of modeled function y

(7)

Cross-entropy error function:

E(w) =
N∑
n=1

En(w) = −
N∑
n=1

C∑
k=1

tnk log yk(xn, w). (8)

See

I [Bishop 95] for a more detailed discussion of error measures for network training.

Stutz – Neural Networks 17 / 35

4. Network Training – Training Approaches

Idea: Adjust the weights such that the error is minimized.

Stochastic training Randomly choose an input value xn and update the weights based on the
error En(w).

Mini-batch training Process a subsetM ⊆ {1, . . . , N} of all input values and update the weights
based on the error

∑
n∈M En(w).

Batch training Process all input values xn, 1 ≤ n ≤ N and update the weights based on the
overall error E(w) =

∑N
n=1En(w).

Stutz – Neural Networks 18 / 35

4. Parameter Optimization

How to minimize the error E(w)?

Problem: E(w) can be nonlinear and may have multiple local minima.

Iterative optimization algorithms:

I Let w[0] be a starting vector for the weights.

I w[t] is the weight vector in the t-th iteration of the optimization algorithm.

I In iteration [t+ 1] choose a weight update ∆w[t] and set

w[t+ 1] = w[t] + ∆w[t]. (9)

I Different optimization algorithms choose different weight updates.

Stutz – Neural Networks 19 / 35

4. Parameter Optimization – Gradient Descent

Idea: In each iteration take a step in the direction of the negative gradient.

I The direction of the steepest descent.

w[0]

w[1]

w[2]

w[3]

w[4]

I Weight update ∆w[t] is given by

∆w[t] = −γ
∂E

∂w[t]
.

learning rate – step size

(10)

Stutz – Neural Networks 20 / 35

4. Parameter Optimization – Second Order Methods

Gradient descent is a simple and efficient optimization algorithm.

I Uses first-order information of the error function E.

I But: often slow convergence and can get stuck in local minima.

Second-order methods offer faster convergence:

I Conjugate gradients,

I Newton’s method,

I Quasi-Newton methods.

See

I [Becker & LeCun 88] for more on accelerating network training with second-order methods.

I [Bishop 95] for more details on parameter optimization for network training.

I [Gill & Murray+ 81] for a general discussion of optimization.

Stutz – Neural Networks 21 / 35

4. Error Backpropagation – Motivation

Summary: We want to minimize the errorE(w) on the training set T to get a good approximation
of the target function.

Using gradient descent and stochastic learning, the weight update in iteration [t+ 1] is given by

w[t+ 1]
(l)
ij = w[t]

(l)
ij − γ

∂En

∂w[t]
(l)
ij

. (11)

How to evaluate the gradient ∂En

∂w
(l)
ij

of the error function with respect to the current weight vector?

Using the chain rule we can write:

∂En

∂w
(l)
ij

=
∂En

∂z
(l)
i

∂z
(l)
i

∂w
(l)
ij︸ ︷︷ ︸

=y
(l−1)
j

. (12)

Stutz – Neural Networks 22 / 35

4. Error Backpropagation – Step 1

Error backpropagation allows to evaluate ∂En

∂w
(l)
ij

for each weight in O(W) where W is the total

number of weights:

(1) Calculate the errors δ(L+1)
i for the output layer:

δ
(L+1)
i :=

∂En

∂z
(L+1)
i

=
∂En

∂y
(L+1)
i

f ′
(
z

(L+1)
i

)
. (13)

I The output errors are often easy to calculate.

. For example using the sum-of-squared error function and the identity as output activation
function:

δ
(L+1)
i =

∂
[

1
2

∑C
k=1(y

(L+1)
k − tnk)2

]
∂y

(L+1)
i

· 1 = yi(xn, w)− tni. (14)

Stutz – Neural Networks 23 / 35

4. Error Backpropagation – Step 2

(2) Backpropagate the errors δ(L+1)
i through the network using

δ
(l)
i :=

∂En

∂z
(l)
i

= f ′
(
z

(l)
i

)m(l+1)∑
k=1

w
(l+1)
ik δ

(l+1)
k . (15)

I This can be evaluated recursively for each layer after determining the errors δ(L+1)
i for the

output layer.

y
(l)
i

y
(l+1)
1

...

y
(l+1)

m(l+1)

δ
(l+1)
1

δ
(l+1)

m(l+1)

δ
(l)
i

Stutz – Neural Networks 24 / 35

4. Error Backpropagation – Step 3

(3) Determine the needed derivatives using

∂En

∂w
(l)
ij

=
∂En

∂z
(l)
i

∂z
(l)
i

∂w
(l)
ij

= δ
(l)
i y

(l−1)
j . (16)

Now use the derivatives ∂En

∂w
(l)
ij

to update the weights in each iteration.

I In iteration step [t+ 1] set

w[t+ 1]
(l)
ij = w[t]

(l)
ij − γ

∂En

∂w[t]
(l)
ij

. (17)

See

I [Rumelhart & Hinton+ 86], [Duda & Hart+ 01] or [Bishop 95] for the derivation of the error
backpropagation algorithm.

I [Bishop 92] for a similar algorithm to evaluate the Hessian of the error function.

Stutz – Neural Networks 25 / 35

5. Regularization – Motivation

Recap: a multilayer perceptron is a universal approximator.

I Given enough degrees of freedom, the network is able to memorize the training data.

I Memorizing the training data is also referred to as over-fitting and usually leads to a poor
generalization performance.

0 1 2 3 4 5 6
0

1

2

3

x

y Target function
Training data

Modeled function

neural network memorizes training data

How to measure the generalization performance?

I A network has good generalization capabilities if the trained approximation works well for
unseen data – the validation set.

Stutz – Neural Networks 26 / 35

5. Regularization

Regularization tries to avoid over-fitting.

I Control the complexity of the neural network to avoid memorization of the training data.

How do we control the complexity of the neural network?

I Add a regularizer to the error function to influence the complexity during training:

Ê(w) = E(w) + ηP (w). (18)

See

I [Bishop 06], [Bishop 95] or [Duda & Hart+ 01] for more details on regularization.

Stutz – Neural Networks 27 / 35

5. Regularization – L2-Regularization

Observation: Large weights within the network tend to result in an approximation with poor
generalization capabilities.

I Penalize large weights using a regularizer of the form

P (w) = wTw = ‖w‖2
2. (19)

I Then, the weights tend exponentially to zero – therefore also called weight decay.

Stutz – Neural Networks 28 / 35

6. Pattern Classification

Problem (Classification): Given a D-dimensional input vector x assign it to one of C discrete
classes.

I The target values tn of the training set T can be encoded according to the 1-of-C encoding
scheme:

tnk = 1 ⇔ xn belongs to class k. (20)

We interpret the pattern x and the class c as random variables:

I p(x) – probability of observing the pattern x;

I p(c) – probability of observing a pattern belonging to class c;

I p(c|x) – posterior probability for class c after observing pattern x.

the probability we are interested in

Stutz – Neural Networks 29 / 35

6. Pattern Classification – Bayes’ Decision Rule

Assume we observed pattern x.

Assume we know the true posterior probabilities p(c|x) for all 1 ≤ c ≤ C.

Which class should the pattern be assigned to?

I Bayes’ decision rule minimizes the number of misclassifications:

c : RD → {1, . . . , C}, x 7→ arg max
1≤c≤C

{p(c|x)} .

assign pattern x to class c with the
highest posterior probability p(c|x)

(21)

Stutz – Neural Networks 30 / 35

6. Pattern Classification – Model Distribution

Problem: The true posterior probability distribution p(c|x) is unknown.

Possible solution: model the posterior probability distribution by qθ(c|x).

Model distribution depending on some parameters θ
– for example the network weights θ = w

I Apply the model-based decision rule which is given by

c : RD → {1, . . . , C}, x 7→ arg max
1≤c≤C

{qθ(c|x)} . (22)

Stutz – Neural Networks 31 / 35

6. Pattern Classification – Network Output

Idea: model the posterior probabilities p(c|x) by means of the network output.

I For example using appropriate output activation functions:

σ(z) =
1

1 + exp(−z)

for two classes with one output unit such that
y(x,w) = qθ(c = 1|x) and 1− y(x,w) = qθ(c = 2|x);

(23)

σ(z, i) =
exp(zi)∑C
k=1 exp(zk)

for C > 2 classes with C output units
and yi(x,w) = qθ(c = i|x).

(24)

Then: Use the training set and maximum likelihood estimation to derive error measures to train
the network.

Stutz – Neural Networks 32 / 35

7. Conclusion

I Artificial neural networks try to learn a specific (unknown) target function using a set of
(noisy) training data.

I In a multilayer perceptron the processing units are arranged in layers and use the weighted
sum propagation rule and arbitrary activation functions.

I A multilayer perceptron with at least one hidden layer is a universal approximator.

Stutz – Neural Networks 33 / 35

7. Conclusion – Cont’d

I A multilayer perceptron is trained by adjusting its weights to minimize a chosen error func-
tion on the given training data.

. The error backpropagation algorithm allows to use first-order optimization algorithms.

I Regularization tries to avoid over-fitting to give a better generalization performance.

. The generalization performance can be measured using a set of unseen data – the valida-
tion set.

I Pattern classification tasks can be solved by modeling the posterior probabilities by means
of the network output.

. Then, we can apply the model-based decision rule to classify new observations.

Stutz – Neural Networks 34 / 35

Thank you for your attention

David Stutz

david.stutz@rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/

Stutz – Neural Networks 35 / 35

david.stutz@rwth-aachen.de
http://www-i6.informatik.rwth-aachen.de/

REFERENCES

References
[Becker & LeCun 88] S. Becker, Y. LeCun: Improving the Convergence of Back-Propagation

Learning with Second Order Methods. Technical report, University of Toronto, Toronto, 1988.
21

[Bishop 92] C.M. Bishop: Exact Calculation of the Hessian Matrix for the Multi-layer Perceptron.
Neural Computation, Vol. 4, 1992. 25

[Bishop 95] C.M. Bishop: Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
1995. 3, 10, 17, 21, 25, 27

[Bishop 06] C.M. Bishop: Pattern Recognition and Machine Learning. Springer Verlag, New
York, 2006. 3, 27

[Duda & Hart+ 01] R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification. Wiley-Interscience
Publication, New York, 2001. 3, 10, 15, 25, 27

[Gill & Murray+ 81] P.E. Gill, W. Murray, M.H. Wright: Practical optimization. Academic Press,
London, 1981. 21

[Haykin 05] S. Haykin: Neural Networks A Comprehensive Foundation. Pearson Education, New
Delhi, 2005. 3, 4

Stutz – Neural Networks 36 / 35

REFERENCES

[Hornik & Stinchcombe+ 89] K. Hornik, M. Stinchcombe, H. White: Multilayer Feedforward Net-
works are Universal Approximators. Neural Networks, Vol. 2, 1989. 15

[Rosenblatt 58] F. Rosenblatt: The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain. Psychological Review, Vol. 65, 1958. 3, 7

[Rumelhart & Hinton+ 86] D.E. Rumelhart, G.E. Hinton, R.J. Williams: Learning Representations
by Back-Propagating Errors. Nature, Vol. 323, 1986. 3, 25

Stutz – Neural Networks 37 / 35

The Blackslide

GoBack

	Outline
	1. Literature
	2. Motivation
	3. Artificial Neural Networks – Processing Units
	3. Artificial Neural Networks – Network Graphs
	3. The Perceptron
	3. The Perceptron – Network Graph
	3. The Perceptron – Activation Functions
	3. The Perceptron – Activation Functions
	3. Multilayer Perceptrons
	3. Two-Layer Perceptron – Network Graph
	3. Expressive Power – Boolean AND
	3. Expressive Power – XOR Problem
	3. Expressive Power – Conclusion
	4. Network Training
	4. Network Training – Error Measures
	4. Network Training – Training Approaches
	4. Parameter Optimization
	4. Parameter Optimization – Gradient Descent
	4. Parameter Optimization – Second Order Methods
	4. Error Backpropagation – Motivation
	4. Error Backpropagation – Step 1
	4. Error Backpropagation – Step 2
	4. Error Backpropagation – Step 3
	5. Regularization – Motivation
	5. Regularization
	5. Regularization – L2-Regularization
	6. Pattern Classification
	6. Pattern Classification – Bayes' Decision Rule
	6. Pattern Classification – Model Distribution
	6. Pattern Classification – Network Output
	7. Conclusion
	7. Conclusion – Cont'd
	LastPage

