
RWTH Aachen University
Chair of Computer Science 6
Prof. Dr.-Ing. Hermann Ney

Selected Topics in Human Language Technology and Pattern Recognition WS 13/14

Introduction to Neural Networks

David Stutz

Matriculation Number ######

February 10, 2014

Adviser: Pavel Golik

2 CONTENTS

Contents

1 Abstract 4

2 Motivation 5

2.1 Historical Background and Bibliographical Notes 5

3 Neural Networks 6

3.1 The Perceptron . 6

3.2 Activation Functions . 7

3.3 Layered Networks . 8

3.4 Feed-Forward Networks . 8

3.5 Multilayer Perceptrons . 9

3.6 Expressive Power . 9

4 Network Training 11

4.1 Error Measures . 11

4.2 Training Approaches . 12

4.3 Parameter Optimization . 12

4.3.1 Linear Units . 12

4.3.2 Weight Initialization . 13

4.3.3 Gradient Descent . 13

4.3.4 Momentum . 13

4.3.5 Enhanced Gradient Descent . 14

4.3.6 Newton’s Method . 14

4.4 Error Backpropagation . 15

4.4.1 Efficiency . 17

4.5 The Hessian . 17

4.5.1 Efficiency . 19

4.6 Regularization . 19

4.6.1 L2-Regularization . 19

4.6.2 Early Stopping . 20

5 Pattern Classification 21

5.1 Statistical Background . 21

5.2 Bayes’ Decision Rule . 21

5.3 Maximum Likelihood Estimation . 21

5.3.1 Derivation of Cross-Entropy . 22

5.4 Application: Recognizing Handwritten Digits 23

5.4.1 Matrix Notation . 23

5.4.2 Implementation and Results . 24

6 Conclusion 25

Appendices 26

LIST OF TABLES 3

A MatLab Implementation 26
A.1 Logistic Sigmoid and its Derivative . 26
A.2 Training Procedure . 26
A.3 Validation Procedure . 28

Literature 30

List of Tables

List of Figures

1 Single processing units and its components. 6
2 Network graph of a perceptron with D input units and C output units. . . 6
3 The logistic sigmoid as activation function. 7
4 Network graph for a two-layer perceptron with C input units, D output

units and m hidden units. 9
5 Single-layer perceptron for modeling boolean AND. 10
6 The learning rate and its influence on the rate of convergence. 14
7 Backpropagation of errors through the network. 16
8 Exact evaluation of the hessian. 17
9 Early stopping based on a validation set. 20
10 Error on the training set during training. 23
11 Results of training a two-layer perceptron using the MNIST dataset. 24

4 1 ABSTRACT

1 Abstract

In this seminar paper we study artificial neural networks, their training and application to
pattern recognition. We start by giving a general definition of artificial neural networks and
introduce both the single-layer and the multilayer perceptron. After considering several
activation functions we discuss network topology and the expressive power of multilayer
perceptrons. The second section introduces supervised network training. Therefore, we
discuss gradient descent and Newton’s method for parameter optimization. We derive
the error backpropagation algorithm for evaluating the gradient of the error function and
extend this approach to evaluate its hessian. In addition, the concept of regularization
will be introduced. The third section introduces pattern classification. Using maximum
likelihood estimation we derive the cross-entropy error function. As application, we train
a two-layer perceptron to recognize handwritten digits based on the MNIST dataset.

5

2 Motivation

Theoretically, the human brain has a very low rate of operations per second when compared
to a state of the art computer [8, p. 28]. Nevertheless, all computers are still outraveled
by the human brain considering an important factor: learning. The human brain is able
to learn how to perform certain tasks based on experience and prior knowledge.

How to teach computers to learn? To clarify the term “learning” in respect to
computers we assume a set of training data T = {(xn, tn) : 1 ≤ n ≤ N} for some N ∈ N
and an arbitrary target function g of which we know the target values tn := g(xn). Our
goal is to teach the computer a reasonably good approximation of g(x) for x in the domain
of g. Many classification1 and regression2 problems can be formulated this way. The target
function may even be unknown.

Considering noise within the given training data such that we only have a value tn ≈
g(xn) we require an additional property that we call ability for generalization. Solving
the problem by interpolation may result in exact values g(xn) but may be a very poor
approximation of g(x) in general. This phenomenon is called over-fitting of the underlying
training data.

2.1 Historical Background and Bibliographical Notes

In 1943 McCulloch and Pitts introduced the first mathematical models concerning net-
works of neurons we call artificial neural networks. But this first step did not include any
results on network training [6, p. 333-335].

The first work on how to train similar networks was Rosenblatt’s perceptron in 1958
which we discuss in section 3.1 [19]. Only ten years later Minsky and Papert showed that
Rosenblatt’s perceptron hat many limitations as we see in section 3.6 and can only model
linearly separable3 problems of classification [6, p. 333-335].

In [20] Rumelhart, Hinton and Williams introduced the idea of error backpropagation
for pattern recognition. In the late 80’s it was shown that non linearly separable problems
can be solved by multilayer perceptrons [10].

Weight decay was introduced in [9]. A diagonal approximation of the hessian was
introduced in [12]. A pruning method based on diagonal approximation of the hessian is
called Optimal Brain Damage and discussed in [16]. The exact evaluation of the hessian
is discussed in [2].

1The classification problem can be stated as follows: Given a D-dimensional input vector x assign it to
one of C discrete classes (see section 5).

2The regression problem can be described as follows: Given a D-dimensional input vector x predict the
value of C continuous target values.

3Considering a classification problem as introduced in section 5 we say a set of data points is not linearly
separable if the classes can not be separated by a hyperplane [5, p. 179].

6 3 NEURAL NETWORKS

Figure 1: Single processing unit and its components.
The activation function is denoted by f and applied
on the actual input z of the unit to form its output
y = f(z). x1, . . . , xD represent input from other units
within the network; w0 is called bias and represents
an external input to the unit. All inputs are mapped
onto the actual input z using the propagation rule.

y...

w0

x1

xD

y := f(z)

3 Neural Networks

An artificial neural network, also referred to as “neural network”, is a set of interconnected
processing units. A processing unit receives input from external sources and connected
units and computes an output which may be propagated to other units. These units
represent the neurons of the human brain which are interconnected by synapses [8, p. 23-
24].

A processing unit consists of a propagation rule and an activation function. The
propagation rule determines the actual input of the unit by mapping the output of all
direct predecessors and additional external inputs onto a single input value. The activation
function is then applied on the actual input and determines the output of the unit. The
output of the processing unit is also called activation. This is illustrated by figure 1
showing a single processing unit where f denotes the activation function, z the actual
input and y the output of the unit.

We distinguish input units and output units. Input units accept the input of the whole
network and output units form the output of the network. Each input unit accepts a single
input value x and we set the output to y := x. Altogether, a neural network models a
function y(x) which dimensions are determined by the number of input and output units.

As to visualize neural networks we use directed graphs which we call network graphs.
As illustrated in figure 1, single processing units are represented by nodes and are in-
terconnected by directed edges. The nodes of the graph are labeled according to the
corresponding output.

3.1 The Perceptron

As example we discuss Rosenblatt’s perceptron which was introduced in 1958 [6, p. 333-
335]. The perceptron consists of D input units and C output units. Every input unit is

Figure 2: The perceptron consists of D input units
and C output units. All units are labeled according
to their output: yi = f(zi) in the case of output
units; xi in the case of input units. The input
values xi are propagated to each output unit using
the weighted sum propagation rule. The additional
input value x0 := 1 is used to include the biases as
weights. As suggested in section 3.3 the units are
assembled in layers.

x0

x1

...

xD

y1

...

yC

input layer

output layer

3.2 Activation Functions 7

connected to every output unit as shown in figure 2. For 1 ≤ i ≤ C the ith output unit
computes the output

yi = f(zi) with zi =

D∑
k=1

wikxk + wi0 (1)

where xj is the input of the jth input unit. In this case the propagation rule is the
weighted sum over all inputs with weights wik and biases w0k. The bias can be included
as weight when considering an additional input x0 := 1 such that the actual input zi can
be written as

zi =

d∑
k=0

wikxk. (2)

Throughout this paper we use the weighted sum as propagation rule for all units except
the input units while activation functions may vary according to the discussion of the next
section.

3.2 Activation Functions

The activation function determines the output of the unit. Often, a threshold function as
for example the heaviside function

h(z) =

{
1 if z ≥ 0

0 if z < 0
(3)

is used [8, p. 34-37]. But in general we want the activation function to have certain prop-
erties. Network training using error backpropagation as discussed in section 4.4 requires
the activation function to be differentiable. In addition, we may want to use nonlinear
activation functions as to increase the computational power of the network as discussed
in section 3.6 [6, p. 307-308].

A sigmoid function is a commonly used s-shaped function. The logistic sigmoid is
given by

σ(z) =
1

1 + exp(−z)
(4)

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

x

σ
(x

)

Logistic Sigmoid

Figure 3: The logistic sigmoid is a
commonly used s-shaped activation
function. It is both smooth and mono-
tonic and allows an probabilistic in-
terpretation as its range is limited to
[0, 1].

8 3 NEURAL NETWORKS

and shown in figure 3. It can be considered as smooth version of the heaviside function.
The softmax function is given by

σ(z, i) =
exp(zi)∑C
k=1 exp(zk)

(5)

where C is the dimension of the vector z. Both functions are smooth and monotonic which
means there are no additional local extrema. This is desirable for network training because
multiple extrema within the activation function could cause additional extrema within the
error surface [6, p. 307-308]. In addition they allow a probabilistic interpretation which
we use in section 5. The derivatives of both the logistic sigmoid and the softmax function
take preferable forms for implementation:

∂σ(z)

∂z
= σ(z)(1− σ(z)), (6)

∂σ(z, i)

∂zj
= σ(z, i) (δ(i, j)− σ(z, j)) (7)

where δ denotes the Kronecker delta4.

3.3 Layered Networks

Arranging the units in layers results in a layered network. Figure 2 already introduced
the perceptron as layered network. In this case we have a layer of input units and a layer
of output units. We may add additional units organized in so called hidden layers. These
units are called hidden units as they are not visible from the outside [8, p. 43].

For counting the number of layers we skip the input layer because there is no real
processing taking place and no variable weights [5, p. 229]. Thus, the perceptron can be
considered a single-layer perceptron without any hidden layers.

3.4 Feed-Forward Networks

Since we can model every neural network in the means of a network graph we get new
neural networks by considering more complex network topologies [5, p.229-231]. We dis-
tinguish two network topologies:

Feed-forward In a feed-forward topology we prohibit closed cycles within the network
graph. This means that a unit in layer p may only propagate its output to a unit in
layer l if l > p. Thus, the modeled function is deterministic.

Recurrent Recurrent networks allow closed cycles. A connection establishing a closed
cycle within a network graph is called feedback connection.

In this paper we consider feed-forward networks only. As demonstrated in figure 2 the
single-layer perceptron implements a feed-forward topology.

4The Kronecker delta δ(i, j) equals 1 if j = i and is 0 otherwise.

3.5 Multilayer Perceptrons 9

x0

x1

...

xD

y
(1)
0

y
(1)
1

...

y
(1)
m

y
(2)
1

y
(2)
2

...

y
(2)
C

input layer

hidden layer

output layer

Figure 4: A two-layer perceptron with
C input units, D output units and
m := m(1) hidden units. Again, we in-

troduced units x0 := 1 and y
(1)
0 := 1 to

include the biases as weights. To dis-
tinguish units and weights with same
indices in different layers, the number
of the layer is written as superscript.

3.5 Multilayer Perceptrons

The multilayer perceptron has additional L ≥ 1 hidden layers. The lth hidden layer

consists of m(l) hidden units. The output value y
(l)
i of the ith hidden unit within this layer

is

y
(l)
i = f

m(l−1)∑
k=1

w
(l)
ik y

(l−1)
k + w

(l)
i0

 y
(l−1)
0 :=1

= f

m(l−1)∑
k=0

w
(l)
ik y

(l−1)
k

 . (8)

Altogether, we count (L + 1) layers including the output layer where we set D := m(0)

and C := m(M+1). Then w
(l)
ik denotes the weighted connection between the kth unit of

layer (l − 1) and the ith unit of layer l. Figure 4 shows a two-layer perceptron with
m := m(1) units in its hidden layer. As previously mentioned, we added additional units

x0 := y
(1)
0 := 1 to represent the biases.

In this paper we discuss the feed-forward multilayer perceptron as model for neural
networks. The modeled function takes the form

y(·, w) : RD → RC , x 7→ y(x,w) =

y1(x,w)
...

yC(x,w)

 (9)

where w is the vector comprising of all weights and yi(x,w) := y
(L+1)
i (x,w) is the output

of the ith output unit.

3.6 Expressive Power

One of Minsky and Papert’s results in 1969 showed that the single-layer perceptron has
severe limitations one of which is called the Exclusive-OR (XOR) problem [6, p.333-335].
As introduction we consider the target function g, which we want to model, given by

g : {0, 1}2 → {0, 1}, x := (x1, x2) 7→

{
1 if x1 = x2 = 1

0 otherwise
. (10)

10 3 NEURAL NETWORKS

x1

x2

x1

x2

(a) Boolean AND (left) and boolean XOR (right)
represented as classification problems.

1

x1

x2

y

w2

w1

w0

(b) Network graph of a single-layer
perceptron modeling boolean AND.

Figure 5: Figure 5(a) shows both boolean AND and boolean XOR represented as clas-
sification problems. As we can see, boolean XOR is not linearly separable. A simple
single-layer-perceptron capable of separating boolean AND is shown in figure 5(b).

Apparently, g describes boolean AND. With D = 2 input units and C = 1 output unit
using the sgn(x) activation function, g can be modeled by a single-layer perceptron:

y = sgn(z) = sgn(w1x1 + w2x2 + w0). (11)

Figure 5(b) illustrates the corresponding network graph. By setting z = 0 we can interpret
equation (11) as straight line in two-dimensional space:

x2 = −w1

w2
x1 −

w0

w2
. (12)

A possible solution for modeling boolean AND is shown in figure 5(a). But, as we can see,
boolean XOR cannot be modeled by this single-layer perceptron. We say boolean XOR is
not linearly separable5 [8, p. 197-200].

This limitation can be overcome by adding at least one additional hidden layer. Theo-
retically, a two-layer perceptron is capable of modeling any continuous function when using
appropriate nonlinear activation functions. This is a direct consequence of Kolmogorov’s
theorem. It states that for every continuous function f : [0, 1]D → R there exist continuous
functions ψj : [0, 1]→ R such that f can be written in the form

f(x1, . . . , xD) =
2D∑
j=0

gf

(
D∑
k=1

wkψj(xk)

)
. (13)

But as of [3, p. 137-140] the function gf is dependent on f and the theorem is not applicable
if the functions ψj are required to be smooth. In most applications we do not know the
target function. And the theorem says nothing about how to find the functions ψj . It
simply states the existence of such functions. Thus, the theorem is not of much practical
use for network design [6, p. 287-288]. Nevertheless, the theorem is important as it states
that theoretically we are able to find an optimal solution using one hidden layer. Otherwise,
we could end up with a problem for which we cannot find a solution using a multilayer
perceptron [8, p. 234-235].

5When considered as classification problem (see section 5) we say the problem is not linearly separable
if the classes can not be separated by a hyperplane [5, p. 179].

11

4 Network Training

Network training describes the problem of determining the parameters to model the target
function. Therefore, we use a set of training data representing the initial knowledge of the
target function. Often the target function is unknown and we only know the value of the
function for specific data points.

Depending on the training set we consider three different learning paradigms [8, p. 85-
88]:

Unsupervised learning The training set provides only input values. The neural net-
work has to find similarities by itself.

Reinforcement learning After processing an input value of the training set the neural
network gets feedback whether the result is considered good or bad.

Supervised learning The training set provides both input values and desired target
values (labeled training set).

Although the human brain mostly learns by reinforcement learning (or even unsuper-
vised learning), we discuss supervised learning only. Let T := {(xn, tn) : 1 ≤ n ≤ N} be
a training set where xn are input values and tn the corresponding target values. As for
any approximation problem we can evaluate the performance of the neural network using
some distance measure between approximation and target function.

4.1 Error Measures

We discuss mainly two error measures. The sum-of-squared error function takes the form

E(w) =
N∑
n=1

En(w) =
1

2

N∑
n=1

C∑
k=1

(yk(xn, w)− tnk)2 (14)

where tnk denotes the kth entry of the nth target value. The cross-entropy error function
is given by

E(w) =

N∑
n=1

En(w) = −
N∑
n=1

C∑
k=1

tnk log(yk(xn, w)). (15)

For further discussion we note that by using yi(xn, w) = f(zi) the derivatives of both

error functions with respect to the actual input z
(L+1)
i of the ith output unit take the form

∂En

∂z
(L+1)
i

=
∂En

∂y
(L+1)
i

∂y
(L+1)
i

∂z
(L+1)
i

= yi(xn, w)− tni. (16)

Here we use the softmax activation function for the cross-entropy error function and the
identity as activation function for the sum-of-squared error function [3, p. 230-231,236-
240].

12 4 NETWORK TRAINING

4.2 Training Approaches

Given an error function E(w) =
∑N

n=1En(w) we distinguish mainly two different training
approaches [6, p. 293-295]:

Stochastic training Randomly choose an input value xn and propagate it through the
network. Update the weights based on the error En(w).

Batch training Go through all input values xn and compute y(xn, w). Update the
weights based on the overall error E(w) =

∑N
n=1En(w).

Instead of choosing an input value xn at random we could also select the input values
in sequence leading to sequential training. As of [5, p. 240-241] stochastic training is
considered to be faster especially on redundant training sets.

4.3 Parameter Optimization

The weight update in both approaches is determined by a parameter optimization algo-
rithm which tries to minimize the error. The error E(w) can be considered as error surface
above the weight space. In general, the error surface is a nonlinear function of the weights
and may have many local minima and maxima. We want to find the global minimum.
The necessary criterion to find a minimum is

∇E(w) = 0 (17)

where ∇E denotes the gradient of the error function E evaluated at point w.

As an analytical solution is usually not possible we use an iterative approach for min-
imizing the error. In each iteration step we choose an weight update ∆w[t] and set

w[t+ 1] = w[t] + ∆w[t] (18)

where w[t] denotes the weight vector w in the tth iteration and w[0] is an appropriate
starting vector. Optimization algorithms differ in choosing the weight update ∆w[t] [3,
p. 254-256]. Before discussing two common optimization algorithms, we discuss the case
of linear units and the problem of choosing a good starting vector w[0].

4.3.1 Linear Units

In the case of a single-layer perceptron with linear output units and sum-of-squared error
we obtain a linear problem. Thus, we can determine the weights exactly using singular
value decomposition [3, p. 259-260].

When considering a multilayer perceptron with linear output units and nonlinear hid-
den units we can at least split up the problem of minimization. The weights in the output
layer can be determined exactly using singular value decomposition whereas the weights
in the hidden layers can be optimized using an iterative approach. Note that every time
the weights of the nonlinear layers are updated the exact solution for the weights in the
output layer has to be recomputed [3, p. 259-260].

4.3 Parameter Optimization 13

4.3.2 Weight Initialization

Following [6, p. 311-312] we want to get a starting vector w such that we have fast and
uniform learning, that is all components learn more or less equally fast. Assuming sig-
moidal activation functions the actual input of a unit should neither be too large causing
σ′(z) to be very small nor be too small such that σ(z) is approximately linear. Both cases
will result in slow learning. For the logistic sigmoid an acceptable value for the unit input
is of unity order [3, p. 260-262]. Thus, we choose all weights randomly from the same
distribution such that

− 1√
m(l−1)

< w
(l)
ij <

1√
m(l−1)

(19)

for the weights in layer l. Assuming a normal distribution with zero mean and unity
variance for the inputs of each unit we get on average the desired actual input of unity
order [6, p. 311-312].

4.3.3 Gradient Descent

Gradient descent is a basic first-order optimization algorithm. This means that in every
iteration step we use information about the gradient ∇E at the current point. In iteration
step [t + 1] the weight update ∆w[t] is determined by taking a step into the direction of
the negative gradient at position w[t] such that

∆w[t] = −γ ∂E

∂w[t]
(20)

where γ is called learning rate. Gradient descent can be used both for batch training and
stochastic training[5, p. 240-241]. In the case of stochastic training we choose

∆w[t] = −γ ∂En
∂w[t]

(21)

as weight update.

4.3.4 Momentum

The choice of the learning rate can be crucial. We want to choose the learning rate such
that we have fast learning but avoid oscillation when choosing the learning rate too large
[3, p. 267-268]. Both cases are illustrated by figure 6 where we seek to minimize a convex
quadratic function. One way to reduce oscillation while using a high learning rate as
described in [3, p. 267-268] is to add a momentum term. Then the change in weight is
dependent on the previous change in weight such that

∆w[t] = −γ ∂E

∂w[t]
+ λ∆w[t− 1] (22)

where λ is called momentum parameter.

14 4 NETWORK TRAINING

−4 −2 0 2 4
0

10

20

30

Iteration

E
rr

o
r

Error
Learning Steps

(a) High learning rate.

−4 −2 0 2 4
0

10

20

30

Iteration

E
rr

o
r

Error
Learning Steps

(b) Low learning rate.

Figure 6: When using a large learning rate the weight updates in each iteration tend to
overstep the minimum. This causes oscillation around the minimum. This observation
is illustrated by figure 6(a). Choosing the learning rate too low will result in a slow
convergence to the minimum as shown in figure 6(b). Both scenarios are visualized using
a quadratic function we seek to minimize.

4.3.5 Enhanced Gradient Descent

There is still a serious problem with gradient descent: how to choose the learning rate
(and the momentum parameter). Currently, we are required to choose the parameters
manually. Because the optimal values are dependent on the given problem, an automatic
choice is not possible.

We discuss a simple approach on choosing the learning rate automatically considering
no momentum term. Let γ[t] denote the learning rate in the tth iteration. Then we have
a simple criterion on whether the learning rate was chosen too large: If the error has
increased after the weight update we may have overstepped the minimum. Then we can
undo the weight update and choose a smaller learning rate until the error decreases [3,
p. 268-272]. Thus, we have

γ[t+ 1] =

{
ρ · γ[t] if E(w[t+ 1]) < E(w[t])

µ · γ[t] if E(w[t+ 1]) > E(w[t])
(23)

where the update parameters can be chosen as suggested in [3, p. 268-272]: set ρ := 1.1
to avoid frequent overstepping of the minimum; set µ := 0.5 to ensure fast recovery to
taking a step which minimizes the error.

4.3.6 Newton’s Method

Although gradient descent has been improved in many ways it is considered a poor opti-
mization algorithm as pointed out in [3, p. 268-269] and [5, p. 240-241]. But optimization
is a widely studied area and, thus, there are more efficient algorithms. Conjugate gra-
dients makes implicit use of second order information. Newton’s method or so called
quasi-Newton methods explicitly use the hessian of the error function in each iteration
step. Some of these algorithms are described in detail in [7, p. 274-290]. We discuss the
general idea of Newton’s method.

4.4 Error Backpropagation 15

Newton’s method is an iterative optimization algorithm based on a quadratic approx-
imation of E using the Taylor series. Let H(w[t]) denote the hessian of the error function
evaluated at w[t]. Then, by taking the first three terms of the Taylor series6, we obtain a
quadratic approximation of E around the point w[t] [7, p. 105-106]:

Ẽ(w[t] + ∆w[t]) = E(w[t]) +∇E(w[t])tr∆w[t] +
1

2
(∆w[t])trH(w[t])∆w[t]. (25)

We want to choose the weight update ∆w[t] such that the quadratic approximation Ẽ is
minimized. Therefore, the necessary criterion gives us:

∇Ẽ(w[t] + ∆w[t]) = ∇E(w[t]) +H(w[t])∆w[t]
!

= 0. (26)

The solution is given by

∆w[t] = −γH(w[t])−1∇E(w[t]) (27)

where H(w[t])−1 is the inverse of the hessian at point w[t]. Because we use a quadratic
approximation, equation (27) needs to be applied iteratively. When choosing w[0] suffi-
ciently close to the global minimum of E, Newton’s method converges quadratically [7,
p. 105-106].

Nevertheless, Newton’s method has several drawbacks. As we see later, the evaluation
of the hessian matrix and its inversion is rather expensive7. In addition, the newton step
in equation (27) may be a step in the direction of a local maximum or saddle point. This
may happen if the hessian matrix is not positive definite [3, p. 285-287].

4.4 Error Backpropagation

Error backpropagation describes an efficient algorithm to evaluate ∇En for multilayer
perceptrons using differentiable activation functions.

Following [5, p. 241-245] we consider the ith output unit first. The derivative of an

arbitrary error function En with respect to the weight w
(L+1)
ij is given by

∂En

∂w
(L+1)
ij

chain-
=
rule

∂En

∂z
(L+1)
i

∂z
(L+1)
i

∂w
(L+1)
ij

(28)

where z
(L+1)
i denotes the actual input of the ith unit within the output layer. Using the

chain rule, the first factor in equation (28) can be written as

δ
(L+1)
i :=

∂En

∂z
(L+1)
i

chain-
=
rule

∂En

∂y
(L+1)
i

∂y
(L+1)
i

∂z
(L+1)
i

=
∂En

∂y
(L+1)
i

f ′
(
z
(L+1)
i

)
(29)

6In general, the Taylor series of a smooth function f at point x0 is given by

T (x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)k. (24)

7The inversion of a n× n matrix usually requires O(n3) operations.

16 4 NETWORK TRAINING

Figure 7: Once evaluated for all output units, the errors

δ
(L+1)
i can be propagated backwards according to equa-

tion (34). The derivatives of all weights in layer l can then
be determined using equation (31).

y
(l)
i

y
(l+1)
1

...

y
(l+1)

m(l+1)

δ
(l+1)
1

δ
(l+1)

m(l+1)

.

where δ
(L+1)
i is often called error and describes the influence of the ith output unit on the

total error En. The second factor of equation (28) takes the form

∂z
(L+1)
i

∂w
(L+1)
ij

=
∂

∂w
(L+1)
ij

m(L)∑
k=0

w
(L+1)
ik y

(L)
k



=
∂

∂w
(L+1)
ij

w(L+1)
ij y

(L+1)
j +

m(L)∑
k=0,k 6=i

w
(L+1)
ik y

(L)
k︸ ︷︷ ︸

const.


= y

(L)
j . (30)

By substituting both factors (29) and (30) into equation (28) we get

∂En

∂w
(L+1)
ij

= δ
(L+1)
i y

(L)
j . (31)

The errors δ
(L+1)
i are usually easy to compute, for example when choosing error function

and output activation function as noted in section 4.1.

Considering the ith hidden unit within an arbitrary hidden layer l we write

∂En

∂w
(l)
ij

chain-
=
rule

∂En

∂z
(l)
i

∂z
(l)
i

∂w
(l)
ij

(32)

and notice that the second factor in equation (32) takes the same form as in equation (30):

∂z
(l)
i

∂w
(l)
ij

=
∂

∂w
(l)
ij

m(l−1)∑
k=0

w
(l)
ik y

(l−1)
k

 = y
(l−1)
j . (33)

Thus, only the error δ
(l)
i changes. Using the chain rule we get

δ
(l)
i :=

∂En

∂z
(l)
i

=

m(l+1)∑
k=1

∂En

∂z
(l+1)
k

∂z
(l+1)
k

∂z
(l)
i

. (34)

In general, the sum runs over all units directly succeeding the ith unit in layer l [5, p. 242-
245]. But we assume that every unit in layer l is connected to every unit in layer (l + 1)

4.5 The Hessian 17

y
(p−1)
j

y
(p)
i

y
(l−1)
s

y
(l)
rw

(p)
ij w

(l)
rs

Figure 8: To derive an algorithm
for evaluating the hessian we con-

sider two weights w
(p)
ij and w

(l)
rs

where we assume that p ≤ l. This
figure illustrates the case when
p < (l − 1).

where we allow the weights w
(l+1)
ki to vanish. Altogether, by substituting the definition of

δ
(l+1)
k from equation (34) we have

δ
(l)
i = f ′

(
z
(l)
i

)m(l+1)∑
k=1

w
(l+1)
ik δ

(l+1)
k . (35)

In conclusion, we have found a recursive algorithm for calculating the gradient ∇En by

propagating the errors δ
(L+1)
i back through the network using equation (35) and evaluating

the derivatives ∂En

∂w
(l)
ij

using equation (32).

4.4.1 Efficiency

The number of operations required for error backpropagation scales with the total number
of weights W and the number of units. Considering a sufficiently large multilayer percep-
tron such that every unit in layer l is connected to every unit in layer (l + 1) the cost of
propagating an input value through the network is dominated by W . Here we neglect the
evaluation cost of the activation functions. Because of the weighted sum in equation (34),
backpropagating the error is dominated by W , as well. This leads to an overall effort
linear in the total number of weights: O(W) [5, p. 246-247].

4.5 The Hessian

Following [2] we derive an algorithm which allows us to evaluate the hessian exactly by
forward and backward propagation. Again, we assume differentiable activation functions
within a multilayer perceptron.

We start by picking two weights w
(p)
ij and w

(l)
rs where we assume the layer p to come

before layer l, that is p ≤ l. The case where p > l will follow by the symmetry of the
hessian [2]. Figure 8 illustrates this setting for p < (l − 1). As the error En is only

depending on w
(p)
ij through the actual input z

(p)
i of the ith unit in layer p we start by

writing

∂2En

∂w
(p)
ij ∂w

(l)
rs

chain-
=
rule

∂z
(p)
i

∂w
(p)
ij

∂

∂z
(p)
i

(
∂En

∂w
(l)
rs

)
(30)
= y

(p−1)
j

∂

∂z
(p)
i

(
∂En

∂w
(l)
rs

)
. (36)

Now we remember the definition of δ
(l)
r in equation (34) and add two more definitions:

g
(l−1,p)
si :=

∂z
(l−1)
s

∂z
(p)
i

and b
(l,p)
ri :=

∂δ
(l)
r

∂z
(p)
i

. (37)

18 4 NETWORK TRAINING

As En is depending on w
(l)
rs only through the value of z

(l)
r we use the chain rule and write

∂2En

∂w
(p)
ij ∂w

(l)
rs

=
∂

∂z
(p)
i

[
y
(p−1)
j

∂z
(l)
r

∂w
(l)
rs

∂En

∂z
(l)
r

]

=
∂

∂z
(p)
i

[
y
(p−1)
j y(l−1)s

∂En

∂z
(l)
r

]
(34)
=

∂

∂z
(p)
i

[
y
(p−1)
j y(l−1)s δ(l)r

]
. (38)

Because the output y
(p−1)
j of the jth unit in layer (p− 1) is not depending on z

(p)
i , we can

use the product rule and plug in the definitions from equation (37):

∂2En

∂w
(p)
ij ∂w

(l)
rs

product-
=
rule

y
(p−1)
j f ′

(
z(l−1)s

) ∂z(l−1)s

∂z
(p)
i

+ y
(p−1)
j y(l−1)s

∂δ
(l)
r

∂z
(p)
i

(37)
= y

(p−1)
j f ′

(
z(l−1)s

)
g
(l−1,p)
si + y

(p−1)
j y(l−1)s b

(l,p)
pi . (39)

Following this derivation, Bishop suggests a simple algorithm to evaluate the g
(l−1,p)
si

and the b
(l,p)
ri by forward and backward propagation. Using the chain rule we can write

g
(l−1,p)
si

(37)
=

∂z
(l−1)
s

∂z
(p)
i

chain-
=
rule

m(l−2)∑
k=1

∂z
(l−1)
s

∂z
(l−2)
k

∂z
(l−2)
k

∂z
(p)
i

=
m(l−2)∑
k=1

f ′
(
z
(l−2)
k

)
w

(l−1)
sk g

(l−2)
ki . (40)

Initially we set gp,pii = 1 and gl,psi = 0 for l ≤ p. Thus, the g
(l−1,p)
si can be obtained by

forward propagating them through the network. Using the definition of δ
(l)
r from equation

(34), the product rule and the definitions from equation (37) we write

b
(l,p)
ri

(37)
=

∂δ
(l)
r

∂z
(p)
i

(34)
=

∂f ′
(
z
(l)
r

)(∑m(l+1)

k=1 w
(l+1)
kr δ

(l+1)
k

)
∂z

(p)
i

product-
=
rule

f ′′
(
z(l)r

) ∂z(l)r
∂z

(p)
i

m(l+1)∑
k=1

w
(l+1)
kr δ

(l+1)
k

+ f ′
(
z(l)r

)m(l+1)∑
k=1

w
(l+1)
kr

∂δ
(l+1)
k

∂z
(p)
i


(37)
= f ′′

(
z(l)r

)
g
(l,p)
ri

m(l+1)∑
k=1

w
(l+1)
kr δ

(l+1)
k

+ f ′
(
z(l)r

)m(l+1)∑
k=1

w
(l+1)
kr b

(l+1,p)
ki

 . (41)

Using equation (41) we can backpropagate the b
(l,p)
ri after evaluating b

(L+1,p)
ki for all output

4.6 Regularization 19

units k:

b
(L+1,p)
ki

(37)
=

∂δ
(L+1)
k

∂z
(p)
i

(34)
=

∂

(
∂En

∂z
(L+1)
k

)
∂z

(p)
i

=
∂2En

∂2z
(L+1)
k

∂z
(L+1)
k

∂z
(p)
i

=
∂2En

∂2z
(L+1)
k

g
(L+1,p)
ki

= g
(L+1),p)
ki

f ′′ (z(L+1)
k

) ∂En

∂y
(L+1)
k

+ f ′
(
z
(L+1)
k

) ∂2En

∂
(
y
(L+1)
k

)2
 . (42)

The errors δ
(l)
r can be evaluated as seen in section 4.4 using error backpropagation.

Altogether, we are able to evaluate the hessian of En by forward propagating the

g
(l−1,p)
si and backward propagating the b

(l,p)
ri as well as the errors δ

(l)
r [2].

4.5.1 Efficiency

We require one step of forward propagation and backward propagation per unit within the
network. Again, assuming a sufficiently large network such that the number of weights W
dominates the network, the evaluation of equation (39) requires O(W 2) operations.

4.6 Regularization

Now we focus on the ability of generalization. We saw that theoretically a neural network
with a sufficiently large number of hidden units can model every continuous target function.
The ability of a network to generalize can be observed using unseen test data not used
for training, usually called a validation set. If the trained approximation of the target
function works well for the validation set the network is said to have good generalization
capabilities [8, p. 227-228]. Overtraining of the network may result in over-fitting of the
training set, that is the network memorizes the training set but performs very poorly on
the validation set [8, p. 227-228].

Regularization tries to avoid over-fitting and to give a better generalization perfor-
mance. This can be achieved by controlling the complexity of the network which is mainly
determined by the number of hidden units. The simplest form of regularization is adding
a regulizer to the error function such that

Ê(w) = E(w) + ηP (w) (43)

where P (w) is a penalty term which tries to influence the form and complexity of the
solution [3, p. 338].

4.6.1 L2-Regularization

Large weights result in an approximation with poor generalization capabilities. Therefore
we try to penalize large weights such that we have [3, p. 338-343]:

Ê(w) = E(w) + ηwTw. (44)

20 4 NETWORK TRAINING

Figure 9: The error on the validation
set (red) is usually getting larger when
the network begins to overfit the train-
ing set. Thus, although the error on the
training set (blue) is decreasing mono-
tonically, we may want to stop training
early to avoid overfitting.

0 200 400 600 800 1,000
0

0.5

1

Iteration
E

rr
o
r

Error on Training Set
Error on Validation Set

This regulizer is also referred to as weight decay. For understanding why this regulizer is
called weight decay, we consider the derivative of the error function Ê which is given by

∇Ê = ∇E + ηw. (45)

Neglecting ∇E and considering gradient descent learning the change in w with respect to
the iteration step t can be described as

∂

∂t
w[t] = −γηw[t]. (46)

Equation (46) has the solution w[t] = w[0]e−γηt such that the weights tend exponentially
to zero – giving the method its name [3, p. 338-340]. While weight decay represents
L2-regularization we could also consider L1-regularization.

4.6.2 Early Stopping

Early stopping describes the approach to stop training before gradient descent has finished.
The error on the training set is usually monotonically decreasing with respect to the
iteration number. For unseen data the error is usually much higher and not monotonically
decreasing. It tends to get larger when we reach a state of over-fitting. Therefore, it
seems reasonable to stop training at a point where the error on the validation set reaches
a minimum [3, p. 343-345]. This is illustrated in figure 9.

21

5 Pattern Classification

In this section we have a closer look on pattern classification. The classification problem
can be defined as follows: Given a D-dimensional input vector x assign it to one of C
discrete classes. We refer to a given class by its number c which lies in the range 1 ≤ c ≤ C.
The input vector x is also called pattern or observation.

5.1 Statistical Background

Using a statistical approach we assume the pattern x and the class c to be random vari-
ables. Then p(x) is the probability that we observe the pattern x and p(c) is the probability
that we observe a pattern belonging to class c [18, p. 108-109].

The classification task is to assign a pattern x to its corresponding class. This can be
accomplished by considering the class-conditional probability p(c|x), that is the probability
of pattern x belonging to class c [18, p. 108-109]. By applying Bayes’ theorem we can
rewrite the class-conditional probability to give

p(c|x) =
p(x|c)p(c)
p(x)

. (47)

Then the class-conditional probability can be interpreted as posterior probability where
p(c) is the prior probability. The prior probability represents the probability of class c
before making an observation. The posterior probability describes the probability of class
c after observing the pattern x. [5, p. 38-39].

5.2 Bayes’ Decision Rule

Given the posterior probabilities p(c|x) for all classes c we can determine the class of x
using a decision rule. But we want to avoid decision errors. A decision error occurs if an
observation vector x is assigned to the wrong class. Bayes’ decision rule given by

c : RD → {1, . . . , C}, x 7→ argmax
1≤c≤C

{p(c|x)} (48)

results in a minimum number of decision errors [18, p. 109]. But it assumes the true
posterior probabilities to be known.

In practice the posterior probabilities p(c|x) are unknown. Therefore, we may model
the probability p(c|x) directly (or indirectly by modeling p(x|c) first) in the means of a
so called model distribution qθ(c|x) which depends on some parameters θ [17, p. 637-638].
Then we apply the model-based decision rule given by

cθ : RD → {1, . . . , C}, x 7→ argmax
1≤c≤C

{qθ(c|x)} . (49)

Here we use the model distribution and, thus, the decision rule is fully dependent on the
parameters θ [17, p. 638].

5.3 Maximum Likelihood Estimation

Using a maximum likelihood approach we can estimate the unknown parameters of the
model distribution. Therefore, we assume that the posterior probabilities are given by
the model distribution qθ(c|x) and the patterns xn are drawn independently from the

22 5 PATTERN CLASSIFICATION

distribution qθ(c|x). We say the data points xn are independent and identically distributed
[6, p. 85-88]. Then the likelihood function is given by

L(θ) =
N∏
n=1

qθ(cn|xn). (50)

where cn denotes the corresponding class of pattern xn. We then want to maximize L(θ).
This is equivalent to minimizing the negative log-likelihood function which is given by

− log(L(θ)) = −
N∑
n=1

log(qθ(xn|c)). (51)

Then, we can use the negative log-likelihood function as error function to train a neural
network. The sum-of-squared error function and the cross-entropy error function can both
be motivated using a maximum likelihood approach. We derive only the cross-entropy
error function in the next section.

5.3.1 Derivation of Cross-Entropy

We follow [5, p. 232-236] and consider the multiclass8 classification problem. The target
values tn follow the 1–of–C encoding scheme, that is the ith entry of tn equals 1 iff the
pattern xn belongs to class i.

We interpret the output of the neural network as the posterior probabilities

p(c|x) = yc(x,w). (52)

The posterior probability for class c can then be written as

p(c|x) =
p(x|c)p(c)∑C
k=1 p(x|k)p(k)

. (53)

As output activation function we use the softmax function such that we can rewrite equa-
tion (53) to give

p(c|x) =
exp(zc)∑c
k=1 exp(zk)

with zk = log(p(k|x)p(k)). (54)

Here we model the posteriors in the means of the network output. This means that the
parameters of the model distribution are given by the weights of the network. Given the
probabilities p(c|x) the maximum likelihood function takes the form

L(w) =
N∏
n=1

C∏
c

p(c|xn)tnc =

N∏
n=1

C∏
c=1

yc(xn, w)tnc (55)

and we can derive the error function E(w) which is given by the cross-entropy error
function already introduced in section 4.1:

E(w) = − log(L(w)) = −
N∑
n=1

C∑
c=1

tncln(yc(w, xn)). (56)

5.4 Application: Recognizing Handwritten Digits 23

(a) 100 units, γ = 0.5 (b) 300 units, γ = 0.5 (c) 400 units, γ = 0.5 (d) 500 units, γ = 0.5

(e) 600 units, γ = 0.5 (f) 700 units, γ = 0.5 (g) 750 units, γ = 0.1 (h) 800 units, γ = 0.1

Figure 10: The error during training for different learning rates γ and numbers of hidden
units. The two-layer perceptron was trained with a batchsize of 100 randomly chosen
images iterated 500 times. The error was measured using the sum-of-squared error function
and plotted after each iteration.

5.4 Application: Recognizing Handwritten Digits

Based on the MNIST dataset (available online at http://yann.lecun.com/exdb/mnist/)
we want to train a two-layer perceptron to recognize handwritten digits. The dataset
provides a training set of 60, 000 images and a validation set of 10, 000 images. The
images have 28 × 28 pixels of size and, thus, we may write an image as vector with
28 · 28 = 784 dimensions. The neural network will be trained using gradient descent for
parameter optimization and the sum-of-squared error function. The training procedure is
implemented in MatLab.

5.4.1 Matrix Notation

For implementing error backpropagation in MatLab it is convenient to introduce a matrix
notation. We discuss the general case of a multilayer perceptron with L layers. The output
of all units in layer l and their actual input can both be combined in vectors:

y(l) :=
(
y
(l)
i

)m(l)

i=1
and z(l) :=

(
z
(l)
i

)m(l)

i=1
. (57)

When combining all weights w
(l)
ij of layer l in a single weight matrix we can express the

propagation of an input vector through the network as several vector matrix products.
The weight matrix W (l) is given by

W (l) :=
(
w

(l)
ij

)m(l),m(l−1)

i,j=1
. (58)

Propagating the output vector of layer (l − 1) denoted by y(l−1) through layer l can then
be written as

y(l) = f
(
W (l)y(l−1)

)
(59)

8Generally, we distinguish the binary classification problem in the case of C = 2 and the multiclass
classification problem for C > 2.

http://yann.lecun.com/exdb/mnist/

24 5 PATTERN CLASSIFICATION

0 200 400 600 800
0

0.5

1

Hidden Units

A
cc

u
ra

cy

γ = 0.5
γ = 0.1

(a) 500 epochs with batch size 100.

0 500 1,000 1,500 2,000
0.9

0.92

0.94

0.96

0.98

Epochs

A
cc

u
ra

cy

batch size 100
batch size 200

(b) 500 epochs with learning rate γ = 0.5.

Figure 11: Figure 11(a) plots the achieved accuracy depending on the number of hidden
units for a fixed learning rate γ = 0.5. For 750 or more units we need to adjust the learning
rate in order to ensure convergence. But this may result in slow convergence such that we
get worse results for few hidden units. Figure 11(b) shows the impact of increasing the
number of epochs. As we would expect, the accuracy increases with rising training set.

where f operates element by element. Given the error vector δ(l+1) defined as

δ(l+1) :=
(
δ
(l+1)
i

)m(l+1)

i=1
(60)

for layer (l + 1) we can use the transpose of the weight matrix to give

δ(l) = f ′(z(l)) •
(
W (l)

)tr
δ(l+1) (61)

where f ′ operates element by element and • denotes the component-wise multiplication.

5.4.2 Implementation and Results

The MNIST dataset is provided in the IDX file format. To get the images as vector with
784 dimensions we use two functions loadMNISTImages and loadMNISTLabels which can be
found online at http://ufldl.stanford.edu/.

Appendix A.2 shows the implementation of the training procedure. The activation
function and its derivative are passed as parameters. We use the logistic sigmoid, which is
shown in appendix A.1, as activation function for both the hidden and the output layer.
The number of hidden units and the learning rate are adjustable. The weight matrices for
both layers are initialized randomly and normalized afterwards (lines 29 to 35). We apply
stochastic training in so called epochs, that is for each epoch we train the network on
randomly selected input values (lines 42 to 61). The number of randomly selected input
values to use for training is defined by the parameter batchSize. After each epoch we plot
the current error on the same input values as the network was trained on (lines 63 to 73).

For comparing different configurations we use the validation set. The validation pro-
cedure, which counts the number of correctly classified images, is shown in appendix A.3.
The accuracy is measured as the quotient of correctly classified images and the total
number of images. Figure 11 shows some of the results.

http://ufldl.stanford.edu/

25

6 Conclusion

In the course of this paper we introduced the general concept of artificial neural net-
works and had a closer look at the multilayer perceptron. We discussed several activation
functions and network topologies and explored the expressive power of neural networks.

Section 4 introduced the basic notions of network training. We focussed on supervised
training. Therefore, we introduced two different error measure to evaluate the perfor-
mance of the network in respect to function approximation. To train the network we
introduced gradient descent as iterative parameter optimization algorithm as well as New-
ton’s method as second-order optimization algorithm. The weights of the network are
adjusted iteratively to minimize the chosen error measure. To evaluate the gradient of
the error measure we introduced the error backpropagation algorithm. We extended this
algorithm to allow the exact evaluation of the hessian, as well.

Thereafter, we discussed the classification problem using a statistical approach. Based
on maximum likelihood estimation we derived the cross-entropy error measure for multi-
class classification. As application we considered digit recognition based on the MNIST
dataset using a two-layer perceptron.

Unfortunately this paper is far too short to cover the extensive topic of neural networks
and their application in pattern recognition. Especially for network training there are more
advanced techniques available (see for example [3]). Instead of the exact evaluation of the
hessian described in [2], approximations to the hessian or its inverse are more efficient to
compute (for example described in [3]). Based on a diagonal approximation of the hessian
there are advanced regularization methods as for example the Optimal Brain Damage
algorithm [16].

In conclusion, artificial neural networks are a powerful tool applicable to a wide range
of problems especially in the domain of pattern recognition.

26 A MATLAB IMPLEMENTATION

Appendices

A MatLab Implementation

A.1 Logistic Sigmoid and its Derivative

1 function y = logisticSigmoid(x)

2 % simpleLogisticSigmoid Logistic sigmoid activation function

3 %

4 % INPUT:

5 % x : Input vector.

6 %

7 % OUTPUT:

8 % y : Output vector where the logistic sigmoid was applied element by

9 % element.

10 %

11

12 y = 1./(1 + exp(-x));

13 end

1 function y = dLogisticSigmoid(x)

2 % dLogisticSigmoid Derivative of the logistic sigmoid.

3 %

4 % INPUT:

5 % x : Input vector.

6 %

7 % OUTPUT:

8 % y : Output vector where the derivative of the logistic sigmoid was

9 % applied element by element.

10 %

11 y = logisticSigmoid(x).*(1 - logisticSigmoid(x));

12 end

A.2 Training Procedure

1 function [hiddenWeights, outputWeights, error] =

trainStochasticSquaredErrorTwoLayerPerceptron(activationFunction,

dActivationFunction, numberOfHiddenUnits, inputValues, targetValues, epochs,

batchSize, learningRate)

2 % trainStochasticSquaredErrorTwoLayerPerceptron Creates a two-layer perceptron

3 % and trains it on the MNIST dataset.

4 %

5 % INPUT:

6 % activationFunction : Activation function used in both layers.

7 % dActivationFunction : Derivative of the activation

8 % function used in both layers.

9 % numberOfHiddenUnits : Number of hidden units.

10 % inputValues : Input values for training (784 x 60000)

11 % targetValues : Target values for training (1 x 60000)

12 % epochs : Number of epochs to train.

13 % batchSize : Plot error after batchSize images.

14 % learningRate : Learning rate to apply.

15 %

16 % OUTPUT:

17 % hiddenWeights : Weights of the hidden layer.

18 % outputWeights : Weights of the output layer.

19 %

20

A.2 Training Procedure 27

21 % The number of training vectors.

22 trainingSetSize = size(inputValues, 2);

23

24 % Input vector has 784 dimensions.

25 inputDimensions = size(inputValues, 1);

26 % We have to distinguish 10 digits.

27 outputDimensions = size(targetValues, 1);

28

29 % Initialize the weights for the hidden layer and the output layer.

30 hiddenWeights = rand(numberOfHiddenUnits, inputDimensions);

31 outputWeights = rand(outputDimensions, numberOfHiddenUnits);

32

33 hiddenWeights = hiddenWeights./size(hiddenWeights, 2);

34 outputWeights = outputWeights./size(outputWeights, 2);

35

36 n = zeros(batchSize);

37

38 figure; hold on;

39

40 for t = 1: epochs

41 for k = 1: batchSize

42 % Select which input vector to train on.

43 n(k) = floor(rand(1)*trainingSetSize + 1);

44

45 % Propagate the input vector through the network.

46 inputVector = inputValues(:, n(k));

47 hiddenActualInput = hiddenWeights*inputVector;

48 hiddenOutputVector = activationFunction(hiddenActualInput);

49 outputActualInput = outputWeights*hiddenOutputVector;

50 outputVector = activationFunction(outputActualInput);

51

52 targetVector = targetValues(:, n(k));

53

54 % Backpropagate the errors.

55 outputDelta = dActivationFunction(outputActualInput).*(outputVector -

targetVector);

56 hiddenDelta =

dActivationFunction(hiddenActualInput).*(outputWeights’*outputDelta);

57

58 outputWeights = outputWeights - learningRate.*outputDelta*hiddenOutputVector’;

59 hiddenWeights = hiddenWeights - learningRate.*hiddenDelta*inputVector’;

60 end;

61

62 % Calculate the error for plotting.

63 error = 0;

64 for k = 1: batchSize

65 inputVector = inputValues(:, n(k));

66 targetVector = targetValues(:, n(k));

67

68 error = error +

norm(activationFunction(outputWeights*activationFunction(hiddenWeights*inputVector))

- targetVector, 2);

69 end;

70 error = error/batchSize;

71

72 plot(t, error,’*’);

73 end;

74 end

28 A MATLAB IMPLEMENTATION

A.3 Validation Procedure

1 function [correctlyClassified, classificationErrors] =

validateTwoLayerPerceptron(activationFunction, hiddenWeights, outputWeights,

inputValues, labels)

2 % validateTwoLayerPerceptron Validate the twolayer perceptron using the

3 % validation set.

4 %

5 % INPUT:

6 % activationFunction : Activation function used in both layers.

7 % hiddenWeights : Weights of the hidden layer.

8 % outputWeights : Weights of the output layer.

9 % inputValues : Input values for training (784 x 10000).

10 % labels : Labels for validation (1 x 10000).

11 %

12 % OUTPUT:

13 % correctlyClassified : Number of correctly classified values.

14 % classificationErrors : Number of classification errors.

15 %

16

17 testSetSize = size(inputValues, 2);

18 classificationErrors = 0;

19 correctlyClassified = 0;

20

21 for n = 1: testSetSize

22 inputVector = inputValues(:, n);

23 outputVector = evaluateTwoLayerPerceptron(activationFunction, hiddenWeights,

outputWeights, inputVector);

24

25 class = decisionRule(outputVector);

26 if class == labels(n) + 1

27 correctlyClassified = correctlyClassified + 1;

28 else

29 classificationErrors = classificationErrors + 1;

30 end;

31 end;

32 end

33

34 function class = decisionRule(outputVector)

35 % decisionRule Model based decision rule.

36 %

37 % INPUT:

38 % outputVector : Output vector of the network.

39 %

40 % OUTPUT:

41 % class : Class the vector is assigned to.

42 %

43

44 max = 0;

45 class = 1;

46 for i = 1: size(outputVector, 1)

47 if outputVector(i) > max

48 max = outputVector(i);

49 class = i;

50 end;

51 end;

52 end

53

54 function outputVector = evaluateTwoLayerPerceptron(activationFunction, hiddenWeights,

A.3 Validation Procedure 29

outputWeights, inputVector)

55 % evaluateTwoLayerPerceptron Evaluate two-layer perceptron given by the

56 % weights using the given activation function.

57 %

58 % INPUT:

59 % activationFunction : Activation function used in both layers.

60 % hiddenWeights : Weights of hidden layer.

61 % outputWeights : Weights for output layer.

62 % inputVector : Input vector to evaluate.

63 %

64 % OUTPUT:

65 % outputVector : Output of the perceptron.

66 %

67

68 outputVector =

activationFunction(outputWeights*activationFunction(hiddenWeights*inputVector));

69 end

30 REFERENCES

References

[1] Sue Becker and Yann LeCun. Improving the convergence of back-propagation learning
with second order methods. Technical report, University of Toronto, Toronto, 1988.

[2] Christopher M. Bishop. Exact calculation of the hessian matrix for the multi-layer
perceptron. Neural Computation, 4, 1992.

[3] Christopher M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, 1995.

[4] Christopher M. Bishop. Neural Networks: A Pattern Recognition Perspective. Tech-
nical report, Aston University, Birmingham, UK, 1996.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer Verlag,
New York, 2006.

[6] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-
Interscience Publication, New York, 2001.

[7] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical optimization.
Academic Press, London, 1981.

[8] Simon Haykin. Neural Networks A Comprehensive Foundation. Pearson Education,
New Delhi, 2005.

[9] Geoffrey E. Hinton. Learning distributed representations of concepts. 1986.

[10] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2, 1989.

[11] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation
of an unknown mapping and its derivatives using multilayer feedforward networks.
Neural Networks, 3, 1990.

[12] Yann LeCun. Modeles connexionistes de l’apprentissage. PhD thesis, 1987.

[13] Yann LeCun. A theoretical framework for back-propagation. 1988.

[14] Yann LeCun. Generalization and network design strategies. Technical report, Uni-
versity of Toronto, Toronto, 1989.

[15] Yann LeCun, Léon Buttou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition, 1998.

[16] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage, 1990.

[17] H. Ney. On the relationship between classification error bounds and training criteria
in statistical pattern recognition. In Iberian Conference on Pattern Recognition and
Image Analysis, pages 636–645, Puerto de Andratx, Spain, 2003.

[18] Hermann Ney. On the probabilistic interpretation of neural network classifiers and
discriminative training criteria. IEEE Transactions on Pattern Alaysis and Machine
Intelligence, 17, 1995.

REFERENCES 31

[19] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65, 1958.

[20] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323, 1986.

	Abstract
	Motivation
	Historical Background and Bibliographical Notes

	Neural Networks
	The Perceptron
	Activation Functions
	Layered Networks
	Feed-Forward Networks
	Multilayer Perceptrons
	Expressive Power

	Network Training
	Error Measures
	Training Approaches
	Parameter Optimization
	Linear Units
	Weight Initialization
	Gradient Descent
	Momentum
	Enhanced Gradient Descent
	Newton's Method

	Error Backpropagation
	Efficiency

	The Hessian
	Efficiency

	Regularization
	L2-Regularization
	Early Stopping

	Pattern Classification
	Statistical Background
	Bayes' Decision Rule
	Maximum Likelihood Estimation
	Derivation of Cross-Entropy

	Application: Recognizing Handwritten Digits
	Matrix Notation
	Implementation and Results

	Conclusion
	Appendices
	MatLab Implementation
	Logistic Sigmoid and its Derivative
	Training Procedure
	Validation Procedure

	Literature

