IAM

PUBLICATIONSBYYEAR

Find all publications at Google Scholar.

2023

David Stutz, Abhijit Guha Roy, Tatiana Matejovicova, Patricia Strachan, Ali Taylan Cemgil, Arnaud Doucet.
Conformal prediction under ambiguous ground truth.
ArXiv, 2023.
[ArXiv | Project Page]

David Stutz, Ali Taylan Cemgil, Abhijit Guha Roy, Tatiana Matejovicova, Melih Barsbey, Patricia Strachan, Mike Schaekermann, Jan Freyberg, Rajeev Rikhye, Beverly Freeman, Javier Perez Matos, Umesh Telang, Dale R. Webster, Yuan Liu, Greg S. Corrado, Yossi Matias, Pushmeet Kohli, Yun Liu, Arnaud Doucet, Alan Karthikesalingam.
Evaluating AI systems under uncertain ground truth: a case study in dermatology.
ArXiv, 2023.
[ArXiv | Project Page]

2022

David Stutz, Krishnamurthy (Dj) Dvijotham, Ali Taylan Cemgil, Arnaud Doucet.
Learning Optimal Conformal Classifiers.
ICLR, 2022.
[ArXiv | OpenReview | Project Page]

David Stutz, Nandhini Chandramoorthy, Matthias Hein, Bernt Schiele.
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators.
TPAMI, 2022.
[ArXiv | IEEExplore | Project Page]

2021

David Stutz, Matthias Hein, Bernt Schiele.
Relating Adversarially Robust Generalization to Flat Minima.
ICCV, 2021.
[ArXiv | Project Page]

David Stutz, Nandhini Chandramoorthy, Matthias Hein, Bernt Schiele.
On Mitigating Random and Adversarial Bit Errors.
MLSys, 2021.
[ArXiv | BibTeX | Project Page]

2020

David Stutz, Matthias Hein, Bernt Schiele.
Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks.
ICML, 2020.
[ArXiv | BibTeX | Project Page]

David Stutz, Andreas Geiger.
Learning 3D Shape Completion under Weak Supervision.
International Journal of Computer Vision, 2020.
[DOI | ArXiv | BibTeX | Project Page]

2019

David Stutz, Matthias Hein, Bernt Schiele.
Disentangling Adversarial Robustness and Generalization.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[ArXiv | BibTeX | Project Page]

2018

David Stutz, Andreas Geiger.
Learning 3D Shape Completion from Laser Scan Data with Weak Supervision.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[PDF | BibTeX | Project Page]

David Stutz, Alexander Hermans, Bastian Leibe.
Superpixels: an evaluation of the state-of-the-art.
Computer Vision and Image Understanding, Volume 166, 2018.
[DOI | ArXiv | PDF | BibTeX | Project Page]

2015

David Stutz.
Superpixel segmentation: an evaluation.
German Conference on Pattern Recognition, 2015.
[PDF | BibTeX | Project Page]

RELATEDARTICLES

Articles and project pages related to the publications listed above. Also see Projects for an overview as well as THESES and SEMINAR PAPERS .

ARTICLE

ArXiv Pre-Print “Disentangling Adversarial Robustness and Generalization”

To date, it is unclear whether we can obtain both accurate and robust deep networks — meaning deep networks that generalize well and resist adversarial examples. In this pre-print, we aim to disentangle the relationship between adversarial robustness and generalization. The paper is available on ArXiv.

More ...

ARTICLE

IJCV Paper “Learning 3D Shape Completion under Weak Supervision”

Our CVPR’18 follow-up paper has been accepted at IJCV. In this longer paper we extend our weakly-supervised 3D shape completion approach to obtain high-quality shape predictions, and also present updated, synthetic benchmarks on ShapeNet and ModelNet. The paper is available through Springer Link and ArXiv.

More ...

ARTICLE

ArXiv Pre-Print “Learning 3D Shape Completion under Weak Supervision”

In this follow-up on our CVPR’18 work, we extend our weakly-supervised 3D shape completion approach to obtain high-quality shape predictions, and also present updated, synthetic benchmarks on ShapeNet and ModelNet. The paper is now available as pre-print on ArXiv. Abstract, some experimental results and a comparison to our CVPR’18 work can be found in this article.

More ...

MAY2018

PROJECT

Learning 3D shape completion under weak supervision; on ShapeNet, ModelNet, KITTI and Kinect data; published at CVPR and on ArXiv.

More ...

ARTICLE

CVPR’18 Paper “Learning 3D Shape Completion from Laser Scan Data with Weak Supervision”

In this CVPR’18 paper, based on my master thesis, we propose a weakly-supervised and learning-based approach to 3D shape completion of sparse and noisy point clouds. We show that, using a learned shape prior, shape completion can be learned without access to ground truth shapes — only by knowing the object category at hand. This article provides the paper and its supplementary material.

More ...

DECEMBER2017

PROJECT

Weakly-supervised shape completion of cars on KITTI using variational auto-encoders; including two synthetic ShapeNet-based benchmark datasets.

More ...

JANUARY2017

PROJECT

Revised C++ implementations of two popular superpixel algorithms, SEEDS and FH, which are shown to outperform the original implementations.

More ...

ARTICLE

CVIU Paper “Superpixels: An Evaluation of the State-of-the-Art”

In the course of the last couple of semesters, I extended the initial comparison of superpixel algorithms in my bachelor thesis to a comprehensive comparison of 28 state-of-the-art algorithms on 5 datasets with regard to quantitative and qualitative performance. The results are now available on ArXiv.

More ...

DECEMBER2016

PROJECT

A comprehensive comparison and evaluation of 28 superpixel algorithms on 5 different datasets; published in CVIU and GCPR.

More ...

ARTICLE

GCPR’15 Paper “Superpixel Segmentation: An Evaluation”

After completing my bachelor thesis, I was encouraged to submit the results at the Young Researcher Forum of the German Conference on Pattern Recognition (GCPR) 2015. In this article, I want to share the paper as well as the corresponding poster.

More ...