Adversarial examples, slightly perturbed images causing mis-classification, have received considerable attention over the last few years. While many different adversarial attacks have been proposed, projected gradient descent (PGD) and its variants is widely spread for reliable evaluation or adversarial training. In this article, I want to present my implementation of PGD to generate L∞, L2, L1 and L0 adversarial examples. Besides using several iterations and multiple attempts, the worst-case adversarial example across all iterations is returned and momentum as well as backtracking strengthen the attack.
Since I worked on confidence-calibrated training (CCAT) some years ago, CCAT has been evaluated using novel attacks. In this article, I want to share some updated results and numbers and contrast the reported numbers with newer experiments that I ran.
In March this year I finally submitted my PhD thesis and successfully defended in July. Now, more than 6 months later, my thesis is finally available in the university’s library. During my PhD, I worked on various topics surrounding robustness and uncertainty in deep learning, including adversarial robustness, robustness to bit errors, out-of-distribution detection and conformal prediction. In this article, I want to share my thesis and give an overview of its contents.
PhD thesis on uncertainty estimation and (adversarial) robustness in deep learning.
In July this year I finally defended my PhD which mainly focused on (adversarial) robustness and uncertainty estimation in deep learning. In my case, the defense consisted of a (public) 30 minute talk about my work, followed by questions from the thesis committee and audience. In this article, I want to share the slides and some lessons learned in preparing for my defense.
While batch normalization has long been argued to increase adversarial vulnerability, it is still used in state-of-the-art adversarial training models. This is likely because of easier training and increased expressiveness. At the same time, recent papers argue that adversarial examples are partly caused by fragile features caused by learning spurious correlations. In this paper, we study the impact of batch normalization on utilizing these fragile features for robustness by fine-tuning only the batch normalization layers.
RESEARCH Fragile Features, Batch Normalization and Adversarial Training Outline Abstract Paper Poster News & Updates This is work led by Nils Walter. Quick links: Paper | Poster Abstract Modern deep learning architecture utilize batch normalization (BN) to stabilize training and improve accuracy. It has been shown that the BN layers alone are surprisingly expressive. In […]
Improving corruption and adversarial robustness by enhancing weak sub-networks.
This week I was honored to speak at the Machine Learning Security Seminar organized by the Pattern Recognition and Applications Lab at University of Cagliari. I presented my work on relating adversarial robustness to flatness in the robust loss landscape, also touching on the relationship to weight robustness. In this article, I want to share the recording and slides of this talk.
The code for my ICCV’21 paper relating adversarial robustness to flatness in the (robust) loss landscape is now available on GitHub. The repository includes implementations of various adversarial attacks, adversarial training variants and “attacks” on model weights in order to measure robust flatness.