IAM

TAG»ADVERSARIAL MACHINE LEARNING«

ARTICLE

Adversarial Training Has Higher Sample Complexity

Training on adversarial examples generated on-the-fly, so-called adversarial training, improves robustness against adversarial examples while incurring a significant drop in accuracy. This apparent trade-off between robustness and accuracy has been observed on many datasets and is argued to be inherent to adversarial training — or even unavoidable. In this article, based on my recent CVPR’19 paper, I show experimental results indicating that adversarial training can achieve the same accuracy as normal training, if more training examples are available. This suggests that adversarial training has higher sample complexity.

More ...

ARTICLE

On-Manifold Adversarial Training for Boosting Generalization

As outlined in previous articles, there seems to be a significant difference between regular, unconstrained adversarial examples and adversarial examples constrained to the data manifold. In this article, I want to demonstrate that adversarial training with on-manifold adversarial examples has the potential to improve generalization if the manifold is known or approximated well enough. As alternative, for more complex datasets, knowledge of parts of the manifold is sufficient, leading to a kind of adversarial data augmentation using affine transformations.

More ...