IAM

TAG»ADVERSARIAL MACHINE LEARNING«

JUNE2023

PROJECT

Series of articles discussing adversarial robustness and adversarial training in PyTorch.

More ...

ARTICLE

47.9% Robust Test Error on CIFAR10 with Adversarial Training and PyTorch

Knowing how to compute adversarial examples from this previous article, it would be ideal to train models for which such adversarial examples do not exist. This is the goal of developing adversarially robust training procedures. In this article, I want to describe a particularly popular approach called adversarial training. The idea is to train on adversarial examples computed during training on-the-fly. I will also discuss a PyTorch implementation that obtains 47.9% robust test error — 52.1% robust accuracy — on CIFAR10 using a WRN-28-10 architecture.

More ...

ARTICLE

Lp Adversarial Examples using Projected Gradient Descent in PyTorch

Adversarial examples, slightly perturbed images causing mis-classification, have received considerable attention over the last few years. While many different adversarial attacks have been proposed, projected gradient descent (PGD) and its variants is widely spread for reliable evaluation or adversarial training. In this article, I want to present my implementation of PGD to generate L, L2, L1 and L0 adversarial examples. Besides using several iterations and multiple attempts, the worst-case adversarial example across all iterations is returned and momentum as well as backtracking strengthen the attack.

More ...

ARTICLE

Updated Results for Confidence-Calibrated Adversarial Training

Since I worked on confidence-calibrated training (CCAT) some years ago, CCAT has been evaluated using novel attacks. In this article, I want to share some updated results and numbers and contrast the reported numbers with newer experiments that I ran.

More ...

ARTICLE

PhD Thesis on Robustness and Uncertainty in Deep Learning

In March this year I finally submitted my PhD thesis and successfully defended in July. Now, more than 6 months later, my thesis is finally available in the university’s library. During my PhD, I worked on various topics surrounding robustness and uncertainty in deep learning, including adversarial robustness, robustness to bit errors, out-of-distribution detection and conformal prediction. In this article, I want to share my thesis and give an overview of its contents.

More ...

NOVEMBER2022

PROJECT

PhD thesis on uncertainty estimation and (adversarial) robustness in deep learning.

More ...

ARTICLE

PhD Defense Slides and Lessons Learned

In July this year I finally defended my PhD which mainly focused on (adversarial) robustness and uncertainty estimation in deep learning. In my case, the defense consisted of a (public) 30 minute talk about my work, followed by questions from the thesis committee and audience. In this article, I want to share the slides and some lessons learned in preparing for my defense.

More ...

ARTICLE

ICML 2022 Art of Robustness Paper “On Fragile Features and Batch Normalization in Adversarial Training”

While batch normalization has long been argued to increase adversarial vulnerability, it is still used in state-of-the-art adversarial training models. This is likely because of easier training and increased expressiveness. At the same time, recent papers argue that adversarial examples are partly caused by fragile features caused by learning spurious correlations. In this paper, we study the impact of batch normalization on utilizing these fragile features for robustness by fine-tuning only the batch normalization layers.

More ...

AUGUST2022

PROJECT

RESEARCH Fragile Features, Batch Normalization and Adversarial Training Outline Abstract Paper Poster News & Updates This is work led by Nils Walter. Quick links: Paper | Poster Abstract Modern deep learning architecture utilize batch normalization (BN) to stabilize training and improve accuracy. It has been shown that the BN layers alone are surprisingly expressive. In […]

More ...

AUGUST2022

PROJECT

Improving corruption and adversarial robustness by enhancing weak sub-networks.

More ...