Check out our latest research on weakly-supervised 3D shape completion.


Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard. Robustness of classifiers: from adversarial to random noise. NIPS 2016: 1624-1632.

Fawzi et al. study robustness in the transition from random samples to semi-random and adversarial samples. Specifically they present bounds relating the norm of an adversarial perturbation to the norm of random perturbations – for the exact form I refer to the paper. Personally, I find the definition of semi-random noise most interesting, as it allows to get an intuition for distinguishing random noise from adversarial examples. As in related literature, adversarial examples are defined as

$r_S(x_0) = \arg\min_{x_0 \in S} \|r\|_2$ s.t. $f(x_0 + r) \neq f(x_0)$

where $f$ is the classifier to attack and $S$ the set of allowed perturbations (e.g. requiring that the perturbed samples are still images). If $S$ is mostly unconstrained regarding the direction of $r$ in high dimensional space, Fawzi et al. consider $r$ to be an adversarial examples – intuitively, and adversary can choose $r$ arbitrarily to fool the classifier. If, however, the directions considered in $S$ are constrained to an $m$-dimensional subspace, Fawzi et al. consider $r$ to be semi-random noise. In the extreme case, if $m = 1$, $r$ is random noise. In this case, we can intuitively think of $S$ as a randomly chosen one dimensional subspace – i.e. a random direction in multi-dimensional space.

Also find this summary on ShortScience.org.

What is your opinion on the summarized work? Or do you know related work that is of interest? Let me know your thoughts in the comments below or get in touch with me: