IAM

Check out our latest research on adversarial robustness and generalization of deep networks.
18thFEBRUARY2019

READING

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, Jianguo Li. Boosting Adversarial Attacks With Momentum. CVPR, 2018.

Dong et al. introduce momentum into iterative white-box adversarial examples and also show that attacking ensembles of models improves transferability. Specifically, their contribution is twofold. First, some iterative white-box attacks are extended to include a momentum term. As in optimization or learning, the main motivation is to avoid local maxima and have faster convergence. In experiments, they show that momentum is able to increase the success rates of attacks.

Second, to improve the transferability of adversarial examples in black-box scenarios, Dong et al. propose to compute adversarial examples on ensembles of models. In particular, the logits of multiple models are summed (optionally using weights) and attacks are crafter to fool multiple models at once. In experiments, crafting adversarial examples on an ensemble of diverse networks allows higher success rate sin black-box scenarios.

Also find this summary on ShortScience.org.

What is your opinion on the summarized work? Or do you know related work that is of interest? Let me know your thoughts in the comments below: