IAM

Check out our latest research on adversarial robustness and generalization of deep networks.

TAG»DEEP LEARNING«

ARTICLE

Denoising Variational Auto-Encoders

A variational auto-encoder trained on corrupted (that is, noisy) examples is called denoising variational auto-encoder. While easily implemented, the underlying mathematical framework changes significantly. As the second article in my series on variational auto-encoders, this article discusses the mathematical background of denoising variational auto-encoders.

More ...

ARTICLE

Categorical Variational Auto-Encoders and the Gumbel Trick

In the third article of my series on variational auto-encoders, I want to discuss categorical variational auto-encoders. This variant allows to learn a latent space of discrete (e.g. categorical or Bernoulli) latent variables. Compared to regular variational auto-encoders, the main challenge lies in deriving a working reparameterization trick for discrete latent variables — the so-called Gumbel trick.

More ...