IAM

Check out our latest research on weakly-supervised 3D shape completion.

TAG»DEEP LEARNING«

ARTICLE

Denoising Variational Auto-Encoder in Torch

Based on the Torch implementation of a vanilla variational auto-encoder in a previous article, this article discusses an implementation of a denoising variational auto-encoder. While the theory of denoising variational auto-encoders is more involved, an implementation merely requires a suitable noise model.

More ...

ARTICLE

Bernoulli Variational Auto-Encoder in Torch

After formally introducing the concept of categorical variational auto-encoders in a previous article, this article presents a practical Torch implementation of variational auto-encoders with Bernoulli latent variables.

More ...

ARTICLE

Variational Auto-Encoder in Torch

After introducing the mathematics of variational auto-encoders in a previous article, this article presents an implementation in LUA using Torch. The main challenge when implementing variational auto-encoders are the Kullback-Leibler divergence as well as the reparameterization sampler. Here, both are implemented as separate nn modules.

More ...

ARTICLE

Denoising Variational Auto-Encoders

A variational auto-encoder trained on corrupted (that is, noisy) examples is called denoising variational auto-encoder. While easily implemented, the underlying mathematical framework changes significantly. As the second article in my series on variational auto-encoders, this article discusses the mathematical background of denoising variational auto-encoders.

More ...