IAM

TAG»COMPUTER VISION«

SEPTEMBER2023

PROJECT

Keeping track of generated images using watermarking.

More ...

ARTICLE

Proper Robustness Evaluation of Confidence-Calibrated Adversarial Training in PyTorch

Properly evaluating defenses against adversarial examples has been difficult as adversarial attacks need to be adapted to each individual defense. This also holds for confidence-calibrated adversarial training, where robustness is obtained by rejecting adversarial examples based on their confidence. Thus, regular robustness metrics and attacks are not easily applicable. In this article, I want to discuss how to evaluate confidence-calibrated adversarial training in terms of metrics and attacks.

More ...

ARTICLE

Generalizing Adversarial Robustness with Confidence-Calibrated Adversarial Training in PyTorch

Taking adversarial training from this previous article as baseline, this article introduces a new, confidence-calibrated variant of adversarial training that addresses two significant flaws: First, trained with L adversarial examples, adversarial training is not robust against L2 ones. Second, it incurs a significant increase in (clean) test error. Confidence-calibrated adversarial training addresses these problems by encouraging lower confidence on adversarial examples and subsequently rejecting them.

More ...

ARTICLE

2.56% Test Error on CIFAR-10 using PyTorch and AutoAugment

Top-tier conferences in machine learning or computer vision generally require state-of-the-art results as baseline to assess novelty and significance of the paper. Unfortunately, getting state-of-the-art results on many benchmarks can be tricky and extremely time-consuming — even for rather simple benchmarks such as CIFAR-10. In this article, I want to share PyTorch code for obtaining 2.56% test error on CIFAR-10 using a Wide ResNet (WRN-28-10) and AutoAugment as well as Cutout for data augmentation.

More ...

ARTICLE

PhD Thesis on Robustness and Uncertainty in Deep Learning

In March this year I finally submitted my PhD thesis and successfully defended in July. Now, more than 6 months later, my thesis is finally available in the university’s library. During my PhD, I worked on various topics surrounding robustness and uncertainty in deep learning, including adversarial robustness, robustness to bit errors, out-of-distribution detection and conformal prediction. In this article, I want to share my thesis and give an overview of its contents.

More ...

NOVEMBER2022

PROJECT

Several mathematical impage processing exercises implemented in C++ and MatLab.

More ...

NOVEMBER2022

PROJECT

Tutorials for (deep convolutional) neural networks.

More ...

NOVEMBER2022

PROJECT

Torch/CUDA implementation of batch normalization for OctNets.

More ...